Nvidia Jetson Xavier NX开发板利用jetpack进行cuda、cudnn配置

本文详细指导了在Ubuntu系统上,没有CUDA和CUDNN基础情况下安装Jetpack的步骤,包括查询系统版本、设置Jetpack源、安装Jetpack、配置CUDA环境变量以及检测CUDNN安装是否成功,解决遇到的问题如FreeImage.h编译错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本方法适用于已经装好机了,有Ubuntu系统了,开机桌面能看到NVIDIA大眼了,但是去到 /usr/local/中一看根本没有cuda、cudnn,也就是没有安装jetpack的情况下,应该怎么办。目前全网相关资源较少,走了很多弯路,在这里总结一下留给后人,也算是全网首发了。

怎么知道你属于上面这种呢?很简单,输入nvcc -V,看有没有版本输出,如果没有,那就说明cuda编译器没配置好,有两种情况,安装了没设置环境变量,或者根本就没安装。如果是前者,那么可以编辑~/.bashrc,加入下面这两行然后source一下就可以了。

export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH 

那如果你根本没安装,加入这个也是白搭,nvcc -V也不能输出版本。可以去/usr/local/里看,没有上面cuda这个文件夹的。

1、安装jetpack

jetpack是NVIDIA针对性设计的一个工具包,里面包含了很多很有用的模块,包括像cuda、cudnn、tensorRT等等好多,安装jetpack也就安装了cuda这些东西,省去很多麻烦,我也尝试过直接安装cuda,但相关依赖太多,麻烦得很。这里介绍用jetpack来安装的方法。

jetpack可以直接安装

sudo apt install nvidia-jetpack

直接输入这一句话就可以,但如果你像我一样输入这句没反应,那么我们就要配置源了,来让系统找到jetpack的位置。

1.1 查询系统版本

首先你要知道你现在的系统版本是多少,来找对应要安装的jetpack版本。这个不是Ubuntu的版本,是一个L4T开头的版本号,查看方式cat /etc/nv_tegra_release

!先别急着去看,这个方法可以,但不好用,他给你一堆你看不懂的东西,你可以下载下面这个程序来查看。输入bash l4t_version.sh运行,会给你一个L4T xx.x(.x)的版本号。

1.2 查找对应jetpack版本

上面系统版本有了以后,你就可以査对应的jetpack版本了,来这里査。

比如我用的这个
在这里插入图片描述
灰字是jetpack版本,底下有设备描述,还有l4t版本号,找对应的就好了。

1.3 查找jetpack对应的另一个编号

接下来去到jetpack资源网站里面去,找到jetpack版本对应的编号,来设置源信息。
网站是这个

点进去以后,上面选择你要的jetpack版本号跳转。
在这里插入图片描述

像我4.6.3跳转下来到这里

在这里插入图片描述
有一组一组的t+数字,还有common开头的一组链接,这个是我们的主要目标。

我们要选择一组t+数字的链接和一组common链接(这个不用选就一组),然后加入到源中。

这个t+数字我不知道是什么含义从哪查,猜测大概是版本更新时间相关的,我的办法就是挨着试,随便试一组t+数字,如果试对了那么恭喜正常安装,试错了的话它会报错,并且提示给你一串数字,是你应该安装的版本,具体这里我安完了没截图,就大概描述一下吧,比如它提示你应该安装cuda_32.7.3-20221122092958,那么你就去找下面的t+数字,正好找到是t186。换成t186就可以了。

怎么来增加源呢?

sudo vi /etc/apt/sources.list这句打开记录源的文件,一般是这个文件,有的默认可能不一样。随便什么编辑器打开都可以,gedit也行看个人习惯。增加下面这两行

deb https://repo.download.nvidia.com/jetson/common r32.7 main
deb https://repo.download.nvidia.com/jetson/t210 r32.7 main

把这两组链接分别导入就可以了,这里主要t+数字要更换,还有后面r32.7就是你的l4t系统版本号,输入一个点后的就可以了,不用精确到小版本,比如我32.7.3就输到32.7,不然也是找不到。

sudo apt update
sudo apt install nvidia-jetpack

接下来试试这两句,第一句是更新一下源,第二句安装jetpack,如果你很幸运t+数字是对的,那么安装成功,不够幸运就换成你合适的那一组源再来一遍,第二次就成功了。

2、配置cuda环境变量

那么安装好cuda以后,直接输入nvcc -V是依然查询不到版本的,这是因为还没有配置环境变量,系统不知道cuda的位置,那么就这样配置:vim ~/.bashrc进入环境变量文件,在末尾加入下面两行内容

export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH 

然后输入source ~/.bashrc使环境变量生效。

接着输入nvcc -V查询版本,能够正常输出版本信息说明配置成功。

3、检测cudnn安装是否成功

进入测试样例cd /usr/src/cudnn_samples_v8/mnistCUDNN

编译测试样例sudo make

运行测试样例sudo ./mnistCUDNN

如果输出最后为Test passed !,则说明样例运行成功,cudnn安装成功。

在这里我是遇到了一个小问题,编译时失败,报下面错误

fatal error: FreeImage.h: No such file or directory

解决方法就是再安装这个文件FreeImage.h

sudo apt-get install libfreeimage3 libfreeimage-dev

然后再编译运行,就通过啦!

安装成功,完结撒花(^-^)V

### 安装 NVIDIA Jetpack 5.1.2 和 jetson-stats #### 关于 NVIDIA Jetpack安装 NVIDIA Jetpack 是一个集成开发环境,用于支持基于 NVIDIA Jetson 平台的应用程序开发Jetpack 提供了 Linux 系统镜像、驱动程序、CUDA 工具包以及其他必要的库和支持文件。 要通过 `sudo apt install` 命令安装特定版本的 NVIDIA Jetpack(例如 5.1.2),需要注意的是,Jetpack 版本通常依赖于底层的操作系统和硬件平台的支持。因此,在执行安装之前,需确保目标设备已配置好相应的软件源并满足兼容性需求。 以下是具体操作说明: - 首先更新系统的软件包列表以获取最新的可用版本信息: ```bash sudo apt update ``` - 接着尝试指定版本号来安装 NVIDIA Jetpack 5.1.2。由于官方文档并未明确指出可以通过简单的 `apt` 命令直接指定版本号完成此过程[^2],可能需要手动调整APT优先级或者下载对应的DEB包后再进行本地安装。如果存在预定义好的APT仓库,则可以运行如下命令: ```bash sudo apt install nvidia-jetpack=5.1.2 -y ``` 注意:上述命令中的版本号应严格匹配实际可获得的二进制版本名称;如果不成功,请查阅[NVIDIA开发者网站](https://developer.nvidia.com/embedded/jetpack)确认是否有对应版本发布至公共APT存储库中[^1]。 #### 安装 jetson-stats 工具 对于监控Jetson系列模块性能状态非常有用的开源项目——jetson-stats,可以直接利用pip工具轻松部署到Python环境中去实现自动化管理和优化目的: - 如果尚未安装 pip ,则可通过以下方式先行设置它: ```bash sudo apt install python3-pip -y ``` - 使用 pip 来全局范围内安装最新稳定版 jetson-stats : ```bash sudo pip3 install --upgrade jtop ``` 启动该服务只需要简单调用即可查看实时统计图表界面展示出来。 ```bash jtop ``` 以上就是关于如何借助标准Linux发行版机制快速上手定制化环境构建流程的一个概述[^4]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值