浅谈傅里叶——3. 傅立叶收敛性证明与非周期信号的推广

从《浅谈傅里叶1》给出了傅里叶公式的三角函数和形式,并且通过欧拉公式作为桥,将实数平面的三角函数和映射到了复平面上,于是在《浅谈傅里叶2》中,有了我们常见的以复指数形式表达的傅里叶公式形式,并且给出了正交性的结论与表达方法。
在本章中,我们将试图证明傅里叶函数的收敛与收敛条件。如果傅里叶级数无法收敛,那么对于给定周期函数f(t),我们就无法对原信号进行拟合f(t)。

关于傅里叶级数的收敛性

证明傅里叶级数对于一般连续函数的收敛性,是比较复杂的。从工作经验来看,其实并不能百分百的还原或者拟合原函数,误差其实一直都存在。所以,在信号学的实际工作环境中,有被称为吉布斯现象(Gibbs phenomenon)1的存在。

有论文指出,当选取的傅里叶级数的项数N增加时,合成的波形虽然更逼近原函数,但在不连续点附近会出现一个固定高度的过冲,N越大,过冲的最大值越靠近不连续点,但其峰值并不下降,而是大约等于原函数在不连续点处跳变值的9%,且在不连续点两侧呈现衰减振荡的形式

在这里插入图片描述

那么对于比较平滑的连续函数来说,傅里叶就有比较好的拟合程度。所以,这里我们就要提出一个数学性的问题,也就是对于特定函数的求解,解决它的方法是否可以收敛,说人话也就是指会聚于一点,向某一值靠近。因此对于复杂的原始信号的“拆解”,那么傅里叶级数的收敛性证明就是十分重要的了。

狄利克莱收敛定理

最常见的一个手段,就是直接扔一个定理,这玩意称为**“狄利克莱收敛定理”**,它要求原函数在周期 2 π 2\pi 2π,并满足一下条件,即收敛

  • 在一个周期区间内连续或只有有限个第一类间断点2
  • 在一个周期区间内只有有限个极值点

f ( x ) f(x) f(x)的傅里叶级数收敛,且有如下性质:

a 0 2 + Σ ( a n cos ⁡ n x + b n sin ⁡ n x ) = { f ( x ) x 为 连 续 点 f ( x + 0 ) + f ( x − 0 ) 2 x 为 间 断 点 \frac{a_0}{2} + \Sigma(a_n \cos nx + b_n \sin nx) = \left\{\begin{matrix} f(x) & x为连续点 \\ \frac{f(x+0) + f(x-0)}{2} & x为间断点 \end{matrix}\right. 2a0+Σ(ancosnx+bnsinnx)={f(x)2f(x+0)+f(x0)xx

傅里叶级数不能收敛的情况

在这里插入图片描述
比方说,对于以第二类间断的函数,就没办法用傅里叶级数进行拟合3。所以说,无论是做题,还是处理信号,如果遇到了这种类似的问题,你可能需要考虑使用其他方法去解决,而不是万能的用傅里叶级数去近似逼近原始函数信号。

傅里叶分析与非周期信号

从热力学的角度看,这个世界不存在无限振荡的周期信号,即便是一个正弦信号,也会因为能量衰减,到最后某一时刻信号消失。所以说,正余弦信号,是理想的信号,因为它在正负轴无限延长,并且不存在能量衰减。

所以,严格来说,我们无法对非周期信号,或者有能量衰减的信号使用傅里叶分析。但是通过一些特殊的处理方法,我们可以让这些信号适用于傅里叶分析。

比方说,对于非周期的信号,可以通过“复制、平移”的方式,把这个非周期信号转换成为周期信号
这里写图片描述
这就是我们分析非周期信号常用的技巧。

如何阅读傅里叶频谱图

傅里叶分析由于对于信号进行了完整的时域分析,于是可以得出信号包含的全部频率信息。例如对于50Hz的正弦信号,通过FFT(Fast Fourier Transform)可以获得一个频谱图如下:

这里写图片描述

由于FFT算法采用蝶形计算,所以对比DFT(Discret Fourier Transform),它的图形是对称的(这也是因为傅里叶级数是关于实轴对称的共轭复数,所以为了快速计算,算法设计者只处理了一半的数据),实际上我们只需要关心其图形的一半。坐标轴X上的数值表示对应第50个维度的地方,就是50Hz频率所在位置,因此,X轴也被称为正弦信号的频率

而纵轴Y轴,数的含义则没有意义,参考傅里叶公式,我们可以知道由复数形式表示的傅里叶级数,其系数是一个包含了振幅、相位等信息的常熟,某些地方Y轴也被成为正弦信号的加权常数

所以对于频率图来说,我们只关心在具体频率分量位置,即对于
F F T ( n ) > 0 FFT(n)>0 FFT(n)>0
是否出现了大于0的数。大于0时,表示该频率存在,频率大小为:

F F T ( n ) = n × F s a m p l i n g L e n ( F F T ) FFT(n) = n \times \frac{F_{sampling}}{Len(FFT)} FFT(n)=n×Len(FFT)Fsampling

否则就是没有频率。

其中, F s a m p l i n g F_{sampling} Fsampling是指信号采样率,单位时间为1秒钟; L e n ( F F T ) Len(FFT) Len(FFT)是复数数组长度,比如你用1024长的复数数组计算某个信号的频率,n是对应的bin的频率。

例如,采样率为1024Hz,FFT数组长度也是1024,那么对于:

F F T ( 0 ) = 0 H z FFT(0) = 0 Hz FFT(0)=0Hz
F F T ( 1 ) = 1 × 1024 1024 = 1 H z FFT(1) = 1 \times \frac{1024}{1024} = 1Hz FFT(1)=1×10241024=1Hz
F F T ( 2 ) = 2 × 1024 1024 = 2 H z FFT(2) = 2 \times \frac{1024}{1024} = 2Hz FFT(2)=2×10241024=2Hz
. . . ... ...

这些知识点对于二维是一样的,所以很容易扩展到二维甚至高维情况。


  1. 吉布斯现象 ↩︎

  2. 第一类间断点 ↩︎

  3. 第二类间断点 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值