符号和公式的直观理解


    直观的理解对于理论学习和创新有非常大的作用。

    |X|:表示X的长度,“|”表示开始和结束。

   UML只是对事物的描述方法。让大家用统一的图形沟通,就像用同样的数学符号一样。


图像处理中Level set(水平级)算法:

       水平级方法用于求图像分割,热力学等等方面。

       从水平级的求解直观来看,就是水平级不断扩展、收缩的过程。我们在图像中可以画很多个初始的闭合园,然后做演化,发现,水平级不断变化,直到到达一个平衡的过程。最后的结果就是图像分割的结果。


图像分割:

     就是要把图像中相似的块分割开来。其中用到阈值分割,最简单的阈值分割是基于直方图的。把直方图分成两块或者多块就可以了。里面就用到类间方差(OTSU),FCM、最大熵等等。只是方法从根本上就没有考虑到图像本身的二维特征,所以效果始终不好。

   而level set结合了坐标分析的方法当然效果上就要好很多了。


OpenGL模型变换:

      有两种视角,一种是物体不变,观察者变化;要么反之。也就是说,你(物体)不动,我(眼睛,观察者,摄像机)动。我不动,你动。

     而空间变化,也就是物体或者观察者在x、y、z三个坐标上面的变化。


模式识别的分类:

      就是找到恰当的特征,根据足够的特征分类。

      当特征不够时,效果肯定不好。

      当特征不准时,特征对分类就没有贡献。

      当特征过多,就要简化特征。

      根据不同的特征,就可以使用不同的分类算法。


相似性的度量:

      在实际情况中,我们需要大量相似性的度量。怎么判断A,B两个东西(对象)是相似的呢。对于两个人,我们认为他们长得像,如:身高相近,肤色相近,体重相当等那么他们就相似。把身高,肤色,体重,眼睛大小,嘴的大小等等作为一个向量。那么两个人的特征的向量就是VA,VB。如果这些属性都相近,那么他们就相似了。也就是VA,VB直接的距离相近,或者角度相近(余弦),那么他们就相似了。

      如果两个物体的特征都可以用面积度量,那么就是重叠的部分多,那么他们也就相似了。

      其实分类的核心就是找到一个相似的度量方法,根据这个相似度量,就可以把它们聚在一起了。

 

树和图:

        其实数据结构中的很多结构都是很直观的。例如树和图,链表。我们学习这些东西的时候,甚至可以先从图形上学习,然后再归纳出我们需要的东西。

      实际上,提出这些理论的人,也应该是先通过观察图形,然后抽象出理论的。但是,由于这些理论出现的太早了,所有我们习惯了先学习理论,在应用到直观的东西上面。这个过程其实和我们认知过程想反。

       例如:树,有主干,分支,树叶。树可以组成森林。规则的树又有完全树。根据树的分支多少,有二叉树,多叉树。从树根到叶子的方法,有深度和广度遍历。如果子树枝深度太长,有有了剪枝的算法。

       而图论更是直观中抽象出来的了,我们生活在城市中,大大小小的路就形成了图。我们从四川大学到春熙路应该怎么走,就是一个路径搜索的问题(寻路问题)。走遍一个国家所有的城市,就是一个图的遍历问题(邮递员问题)。

 

 

切比雪夫不等式

 


 

|X-u| 》e,就是说概率分布函数中,取距x=u左右距离大于e以外的部分,其概率必定小于不等式后面的部分。

 

 

大数定律

 大数定律就是说,如果试验的次数N足够多,那么事件A的概率就等于事件A在N次试验中出现的概率,即Na/N。Na是事件A出现的次数。

辛钦大数定律

就是出现试验的次数足够多,那么其样本的均值就趋近于实际的均值。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值