在vslam中对于观测数据估计位姿进行优化的方式是我们之前有讲到的BA,那么卡尔曼滤波KF是什么呢?在BA方法没有被普遍使用的时候,基于KF的优化方法是主流,这里我们也来了解一下,虽然在如今的主流视觉slam方法里不再使用KF的方法,但是有IMU等多传感器融合的slam系统里KF仍然占有一席之地。
一、卡尔曼滤波EF
首先来引用两篇博客:
https://www.jianshu.com/p/d3b1c3d307e0
https://www.cnblogs.com/zsychanpin/p/7136015.html
两位博主已经通俗易懂的解释了卡尔曼滤波的前世今生,简单来讲,KF解决的是这么一个问题:
在你自己知道了运动方程的前提下,在某一个时刻你通过其他手段观测到一个位置,利用这个观测到的位置来修正你根据上一个时刻位置通过运动方程预测出来的位置,并以这时预测的位置来推断下次的位置。
流程如下:(五大方程&#x