VSLAM基础(十)————卡尔曼滤波

本文介绍了卡尔曼滤波(KF)在视觉SLAM中的作用,尽管现在BA方法更为常见,但KF在多传感器融合SLAM中仍有应用。文章详细阐述了KF的基本原理和流程,并探讨了扩展卡尔曼滤波(EKF)如何处理非线性问题,将其应用于SLAM中的相机观测方程线性化。
摘要由CSDN通过智能技术生成

在vslam中对于观测数据估计位姿进行优化的方式是我们之前有讲到的BA,那么卡尔曼滤波KF是什么呢?在BA方法没有被普遍使用的时候,基于KF的优化方法是主流,这里我们也来了解一下,虽然在如今的主流视觉slam方法里不再使用KF的方法,但是有IMU等多传感器融合的slam系统里KF仍然占有一席之地。

一、卡尔曼滤波EF

首先来引用两篇博客:

https://www.jianshu.com/p/d3b1c3d307e0

https://www.cnblogs.com/zsychanpin/p/7136015.html

两位博主已经通俗易懂的解释了卡尔曼滤波的前世今生,简单来讲,KF解决的是这么一个问题:

在你自己知道了运动方程的前提下,在某一个时刻你通过其他手段观测到一个位置,利用这个观测到的位置来修正你根据上一个时刻位置通过运动方程预测出来的位置,并以这时预测的位置来推断下次的位置。

 

流程如下:(五大方程&#x

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值