VSLAM基础(十)————卡尔曼滤波

本文介绍了卡尔曼滤波(KF)在视觉SLAM中的作用,尽管现在BA方法更为常见,但KF在多传感器融合SLAM中仍有应用。文章详细阐述了KF的基本原理和流程,并探讨了扩展卡尔曼滤波(EKF)如何处理非线性问题,将其应用于SLAM中的相机观测方程线性化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在vslam中对于观测数据估计位姿进行优化的方式是我们之前有讲到的BA,那么卡尔曼滤波KF是什么呢?在BA方法没有被普遍使用的时候,基于KF的优化方法是主流,这里我们也来了解一下,虽然在如今的主流视觉slam方法里不再使用KF的方法,但是有IMU等多传感器融合的slam系统里KF仍然占有一席之地。

一、卡尔曼滤波EF

首先来引用两篇博客:

https://www.jianshu.com/p/d3b1c3d307e0

https://www.cnblogs.com/zsychanpin/p/7136015.html

两位博主已经通俗易懂的解释了卡尔曼滤波的前世今生,简单来讲,KF解决的是这么一个问题:

在你自己知道了运动方程的前提下,在某一个时刻你通过其他手段观测到一个位置,利用这个观测到的位置来修正你根据上一个时刻位置通过运动方程预测出来的位置,并以这时预测的位置来推断下次的位置。

 

流程如下:(五大方程&#x

### VSLAM后端滤波算法实现与优化 VSLAM(Visual Simultaneous Localization and Mapping)的后端主要负责对前端输出的结果进行优化,通过滤波或非线性优化理论获得最优的姿估计和全局一致性地图[^1]。具体到滤波方法的应用,在计算资源有限且待估计量较为简单的情况下,扩展卡尔曼滤波(EKF, Extended Kalman Filter)是一种常用的选择,尤其在激光SLAM中有广泛应用[^3]。 #### 扩展卡尔曼滤波(EKF) EKF 是一种针对非线性系统的改进版卡尔曼滤波器。其核心思想是通过对非线性函数进行一阶泰勒展开近似为线性模型,从而应用标准卡尔曼滤波框架完成状态估计。对于 VSLAM 的后端而言,EKF 可用于实时更新机器人置以及环境特征点的置估计[^4]。 以下是 EKF 的基本流程: 1. **预测阶段**:基于运动学模型预测下一时刻的状态及其协方差矩阵。 2. **校正阶段**:利用观测数据修正预测结果,减少不确定性。 代码示例展示了如何构建一个简单的 EKF 框架: ```python import numpy as np class EKF: def __init__(self, initial_state, covariance_matrix): self.state = initial_state # 初始状态向量 self.covariance = covariance_matrix # 协方差矩阵 def predict(self, F, Q, control_input=None): """ 预测阶段 """ if control_input is not None: self.state = F @ self.state + control_input else: self.state = F @ self.state self.covariance = F @ self.covariance @ F.T + Q def update(self, H, R, measurement): """ 校正阶段 """ innovation = measurement - H @ self.state S = H @ self.covariance @ H.T + R K = self.covariance @ H.T @ np.linalg.inv(S) self.state += K @ innovation self.covariance -= K @ S @ K.T ``` #### 粒子滤波(Particle Filter) 粒子滤波适用于高度非线性和非高斯分布的情况。它通过一组加权样本(即粒子)表示概率密度函数,并采用重采样技术保持多样性。尽管粒子滤波在理论上具有更强的表现力,但在实际应用中可能面临维数灾难问题,尤其是在大规模环境中[^5]。 #### 渐进式 vs 批量式优化 - **渐进式方法**:假设当前时刻的状态仅依赖于上一时刻的状态,典型代表为卡尔曼滤波类方法。这类方法适合在线场景下的快速估计需求。 - **批量式方法**:考虑整个历史序列中的所有状态关系,能够提供更精确的全局一致解,但计算复杂度较高。常用的工具包如 g2o 和 Ceres Solver 提供了高效的图优化解决方案。 ### 总结 VSLAM 后端可以通过多种方式实现滤波功能,其中扩展卡尔曼滤波因其良好的平衡性能成为经典选择之一。然而,随着硬件能力提升及应用场景多样化发展,更多高级技术和混合策略也被引入以满足不同任务的需求。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值