yolo v3 照着论文一步步复现-iou

pytorch 1.7.1 py3.8_cuda102_cudnn7_0
用pytorch提供的集成函数替换原有的手写函数
iou函数:

torchvision.ops.box_iou(boxes, boxes)
from torchvision import ops
import torch

def compute_iou(rec1, rec2):
    """
    computing IoU
    :param rec1: (y0, x0, y1, x1), which reflects
            (top, left, bottom, right)
    :param rec2: (y0, x0, y1, x1)
    :return: scala value of IoU
    """
    # computing area of each rectangles
    S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
    S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])

    # computing the sum_area
    sum_area = S_rec1 + S_rec2

    # find the each edge of intersect rectangle
    left_line = max(rec1[1], rec2[1])
    right_line = min(rec1[3], rec2[3])
    top_line = max(rec1[0], rec2[0])
    bottom_line = min(rec1[2], rec2[2])

    # judge if there is an intersect
    if left_line >= right_line or top_line >= bottom_line:
        return 0
    else:
        intersect = (right_line - left_line) * (bottom_line - top_line)
        return intersect / (sum_area - intersect)


if __name__ == '__main__':
    boxes1=torch.Tensor([[20,20,30,30]])
    boxes2=torch.Tensor([[25,25,35,35]])
    iou = ops.box_iou(boxes1,boxes2)

    rect1 = (20,20,30,30)
    # (top, left, bottom, right)
    rect2 = (25,25,35,35)
    iou2 = compute_iou(rect1, rect2)
    print(iou2)

    print(iou.numpy()[0][0])

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值