1、若函数 f:Rn→R 是凸的,有个很重要的前提, domf 是凸集。
2、函数是凸的,当且仅当其在与其定义域相交的任何直线上都是凸的?
→ 直线 x+tv 与 domf 相交,且 f(x+tv) 是凸的,为什么能证明 f(x) 是凸的?
3、拓展值延伸,起到自动定义定义域的作用,引出示性函数。
4、一阶条件, f 可微是由梯度
f(y)≥f(x)+∇f(x)T(y−x),f(x)为f在x 附近的泰勒近似。
5、一阶凸性条件的证明中,用到了2的结论。
6、一阶凸性一般情况的证明,为什么要用 g(t)≥g(t˜)+g′(t)(t−t˜) 来证明?
7、二阶条件,
凸优化笔记(三)--凸函数
最新推荐文章于 2024-08-23 23:17:06 发布
本文详细探讨了凸优化中的关键概念——凸函数。从凸集出发,阐述了函数凸性的定义及其重要性质,包括一阶和二阶条件。通过泰勒展开和Jensen不等式,解释了全局最优的判断依据。此外,还讨论了拟凸函数的概念,及其在局部优化中的意义。最后,介绍了指数和对数函数的凸性特性,以及概率密度函数的相关性质。
摘要由CSDN通过智能技术生成