凸优化笔记(三)--凸函数

本文详细探讨了凸优化中的关键概念——凸函数。从凸集出发,阐述了函数凸性的定义及其重要性质,包括一阶和二阶条件。通过泰勒展开和Jensen不等式,解释了全局最优的判断依据。此外,还讨论了拟凸函数的概念,及其在局部优化中的意义。最后,介绍了指数和对数函数的凸性特性,以及概率密度函数的相关性质。
摘要由CSDN通过智能技术生成

1、若函数 f:RnR 是凸的,有个很重要的前提, domf 是凸集。
2、函数是凸的,当且仅当其在与其定义域相交的任何直线上都是凸的?
直线 x+tv domf 相交,且 f(x+tv) 是凸的,为什么能证明 f(x) 是凸的?
3、拓展值延伸,起到自动定义定义域的作用,引出示性函数。
4、一阶条件, f 可微是由梯度 f 存在引出。 全局下估计?
   f(y)f(x)+f(x)T(yx),f(x)fx 附近的泰勒近似。
5、一阶凸性条件的证明中,用到了2的结论。
6、一阶凸性一般情况的证明,为什么要用 g(t)g(t˜)+g(t)(tt˜) 来证明?
7、二阶条件,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值