如何在Langchain中利用Chroma DB作为向量存储

理解向量数据库

在现代机器学习和自然语言处理应用中,向量数据库(如Chroma DB)已变得至关重要。它们优化了高维向量的存储和检索,这对于语义搜索、推荐系统和信息检索等任务至关重要。在LangChain的背景下,Chroma这样的向量存储的集成可以显著增强数据处理能力。

向量基础知识

在机器学习中,数据通常会被转换为可以在多维空间中表示文本、图像或其他信息的向量。每个维度捕捉到数据的特定特征。例如,句子“猫坐在垫子上”可以通过Word2Vec、GloVe或更新的基于transformer的模型(如BERT或GPT)生成的嵌入转换为向量。每个向量表示可以捕捉语义相似性——语义相似的句子会在高维空间中生成相似的向量。

介绍Chroma DB

Chroma DB是一个专为高效处理嵌入而设计的向量存储。其架构旨在实现高吞吐量和低延迟操作,非常适合需要快速访问数据的应用程序,如搜索查询或实时分析。Chroma支持多种索引方法,并提供简单的API以无缝地与向量数据交互。

Chroma DB的关键特性

  1. 可扩展性:Chroma DB可以处理大型数据集,并随着数据量增长良好扩展。
  2. 快速查询响应:它针对高速查询和检索进行了优化,能够快速访问相关数据。
  3. 语义搜索能力:其向量表示允许进行语义搜索,查询结果不仅在语法上相似,而且在上下文上也类似。
  4. 集成:Chroma提供与现有框架的简单集成路径,特别是与LangChain的集成。

设置Chroma DB

要在LangChain中开始利用Chroma DB作为向量存储,首先需要设置环境并安装必要的软件包。

第一步:环境设置

假设您已经安装了Python,可以使用以下命令设置环境:

pip install langchain
pip install chromadb
pip install transformers

这将安装 langchainchromadbtransformers,供您创建和管理涉及向量和嵌入的管道。

第二步:初始化Chroma DB

接下来,您需要初始化Chroma DB。下面是一个简单的示例:

import chromadb
from chromadb import Client
# 初始化ChromaDB客户端
chroma_client = Client()

此代码片段创建了一个客户端实例,使您可以与Chroma的功能进行交互。

在LangChain中集成Chroma DB

初始化Chroma DB后,下一步是将其与LangChain集成。这种集成使您能够无缝管理和检索嵌入。

第三步:使用Chroma创建LangChain内存实例

在LangChain中,您可以设置一个利用ChromaDB进行存储的内存实例:

from langchain.memory import ChromaMemory
# 创建ChromaMemory实例
memory = ChromaMemory(
    chroma_client=chroma_client,    
    collection_name=\"my_vector_store\"    
    )

ChromaMemory类接受初始化的Chroma客户端和一个集合名称。此集合名称充当存储向量的命名空间。

第四步:向Chroma DB添加数据

现在可以将嵌入添加到ChromaDB中。假设您有一个需要向量化的句子集合:

from transformers import AutoTokenizer, AutoModel
import torch
# 加载预训练的transformer模型以生成嵌入
model_name = \"sentence-transformers/all-MiniLM-L6-v2\"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# 示例句子
sentences = [
    \"The cat sits on the mat.\",    
    \"A dog is playing in the park.\"    
    ]
# 创建嵌入的函数
def create_embeddings(sentences):
    inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')    
    with torch.no_grad():     
       embeddings = model(**inputs).last_hidden_state.mean(dim=1)  # 平均池化    
    return embeddings.numpy()
# 创建嵌入并添加到Chroma
embeddings = create_embeddings(sentences)
for i, embedding in enumerate(embeddings):
    memory.add(\"Sentence_{}\".format(i), embedding.tolist())    
    ```
在这个示例中,我们利用sentence-transformers库的模型将文本转换为嵌入。然后,将每个嵌入添加到Chroma向量存储中。
## 查询Chroma DB以进行相似性搜索
在将数据添加到Chroma后,您可以利用其功能进行语义搜索。
### 第五步:执行相似性搜索
Chroma DB提供了使用向量相似性检索相似嵌入的功能。以下是查询方法:

为新句子创建嵌入

newsentence = "A cat is lying on a carpet."
newembedding = createembeddings([newsentence])

在Chroma数据库中搜索相似向量

results = memory.similaritysearch(newembedding[0], top_k=2)

显示结果

for result in results:
  print(\"Retrieved:\", result)

在此示例中,我们为新的查询句子创建嵌入,然后使用similaritysearch 方法从Chroma存储中获取最相似的向量。topk`参数指定您希望检索的结果数量。

高级用法:细化和自定义

第六步:自定义处理流程

对于更复杂的应用,考虑细化嵌入创建或自定义查询过程。例如,您可能希望整合与向量相关的元数据,如文档来源或上下文。

为向量添加元数据

您可以通过修改 add方法来在向量旁边存储补充元数据:

metadata = [
    {\"source\": \"Document_1\", \"category\": \"animal\"},    
    {\"source\": \"Document_2\", \"category\": \"animal\"},    
    ]
for i, (embedding, meta) in enumerate(zip(embeddings, metadata)):
    memory.add(   
        \"Sentence_{}\".format(i),        
        embedding.tolist(),        
        metadata=meta    )    
        ```
通过这种设置,Chroma DB中的每个向量都携带上下文信息,您可以在以后用于过滤或分类查询。
### 第七步:处理更新和删除
随着数据的演变,您可能需要更新或删除Chroma DB中的向量:

更新现有嵌入

memory.update("Sentence0", newembedding[0].tolist())

删除嵌入

memory.delete("Sentence_1")

这些操作使您能够有效地管理向量存储,确保其反映最新的数据。

结论

在这篇综合指南中,我们探讨了如何在LangChain中设置和利用Chroma DB作为向量存储。我们探索了基础知识和实际集成,并补充了大量示例。随着自然语言处理领域的不断发展,利用Chroma DB这样强大的工具将促进创新和高效的高维数据处理应用。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

### LangChainChromaDB集成教程 #### 1. 安装依赖库 为了使LangChain能够与ChromaDB顺利协作,需安装必要的Python包: ```bash pip install langchain chromadb ``` #### 2. 初始化Chroma客户端并创建集合 通过下面的代码片段可以初始化Chroma客户端,并建立一个新的集合用于存储文档向量。 ```python import chromadb from chromadb.config import Settings client = chromadb.Client(Settings(persist_directory="./chroma_db")) collection = client.create_collection(name="langchain_demo") ``` 此操作定义了一个名为`langchain_demo`的新集合[^1]。 #### 3. 准备数据集并向Chroma中添加记录 准备要嵌入的数据源文件路径列表后,可以通过如下方式加载这些文本并将它们转换为适合存入数据库的形式。 ```python from langchain.document_loaders import TextLoader from langchain.embeddings.openai import OpenAIEmbeddings loader = TextLoader('path/to/your/textfile.txt') documents = loader.load() embeddings = OpenAIEmbeddings() texts = [doc.page_content for doc in documents] ids = ["id{}".format(i) for i in range(len(texts))] metadatas = [{"source": f"text{i}"} for i in range(len(texts))] collection.add(ids=ids, metadatas=metadatas, embeddings=[embeddings.embed_query(t) for t in texts]) ``` 上述过程实现了从本地读取纯文本文件到将其转化为嵌入表示形式最后保存至Chroma中的完整流程。 #### 4. 查询相似度最高的条目 一旦完成了数据录入工作,则可通过执行查询来检索最接近给定输入字符串的内容项。 ```python query_result = collection.query( query_embeddings=[embeddings.embed_query("example query")], n_results=5, ) print(query_result) ``` 这段脚本展示了如何基于OpenAI Embedding服务计算查询语句与其他已知实例间的余弦距离从而找出前五名匹配对象的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值