论文阅读笔记——YOLOP: You Only Look Once for Panoptic Driving Perception

该网络设计聚焦于自动驾驶,采用多任务架构,结合轻量级CNN和三个解码器执行交通目标检测、可驾驶区域分割及车道检测。其优势在于并行处理任务和信息共享,且能在JetsonTX2上运行。网络结构包括CSPDarknet作为backbone,利用SPP和FPN模块的neck,以及分别对应检测、可驾驶区域分割和车道线检测的解码器头。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  针对自动驾驶领域的全景驾驶感知系统而设计的网络,能够同时实现交通目标检测、可驾驶区域分割、车道检测。能够做到高精度和实时性,可在嵌入式设备Jetson TX2上运行。
  多任务网络的优势:①速度快,可以同时并行处理多个任务,而不是串行地一个一个任务去完成。②可在不同任务之间共享信息,通常多任务网络共享相同的特征提取主干。
  网络结构:一个轻量级CNN用于提取特征 + 三个解码器用于完成三个任务
  检测解码器使用one-stage检测网络:①one-stage网络比two-stage网络速度快,更能适应实时性的要求。②one-stage的预测机制更适合语义分割任务,编码器输出的feature map融合了不同尺度的语义信息,分割分支可利用这些特征图完成像素级的语义预测。
  Grid-based 的检测任务预测机制与语义分割任务的预测机制更相关。

在这里插入图片描述

  Encoder:编码器包括backbone和neck
  Backbone:用于提取图像特征,选用CSPDarknet,解决了优化过程中的梯度复制问题,支持特征传播和特征重用,从而减少了参数和计算量,利于保证网络的实时性能。
  Neck:用于融合主干生成的特征,由空间金字塔池化(Spatial Pyramid Pooling,SPP)模块和特征金字塔网络(Feature Pyramid Networks)模块组成。SPP生成并融合不同尺度的特征,FPN融合不同语义层次的特征,使得生成的特征包含多尺度和多语义层次的信息。
  Decoder:解码器包括Detect Head、Drivable Area Segment Head、Lane Line Segment Head

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晓shuo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值