Ollama是什么?
Ollama是一款开源的本地大语言模型(LLM)运行框架,支持Linux/macOS/Windows多平台。它通过简单的命令行工具,让用户无需复杂配置就能在本地运行Llama、DeepSeek、Phi等前沿AI模型。通过智能化的依赖检测、自动GPU加速支持,以及轻量级架构设计,Ollama将大模型部署门槛降到新低。
核心功能亮点
-
开箱即用:预置Llama3、DeepSeek-R1等20+热门模型库,支持
ollama run
命令直接调用 -
硬件适配:自动识别NVIDIA/AMD显卡,智能安装CUDA/ROCM驱动组件
-
跨平台:支持Docker部署,提供Python/JavaScript客户端库
-
自定义扩展:允许通过Modelfile修改模型参数、添加个性对话模板
-
资源友好:最小1.4B参数的moondream模型仅需829MB内存即可运行
三步完成安装(以Linux为例)
# 执行自动化安装脚本(支持amd64/arm64架构)
curl -fsSL https://ollama.com/install.sh | sh
# 验证安装结果(显示版本号即成功)
ollama --version
安装过程自动完成以下关键步骤:
-
创建
/usr/local/bin/ollama
可执行文件 -
配置systemd服务实现开机自启
-
检测NVIDIA显卡时自动部署CUDA驱动
-
对WSL2环境进行特殊适配
实战:部署DeepSeek-R1模型
# 拉取最新版DeepSeek模型(约5.6GB)
ollama pull deepseek-r1
# 启动交互式对话
ollama run deepseek-r1
>>> 请用七言绝句描写江南春色
性能需求参考表
模型规模 | 推荐内存 | 典型响应时间 |
---|---|---|
3B参数 | 2GB+ | 0.8秒/词 |
7B参数 | 8GB+ | 1.2秒/词 |
13B参数 | 16GB+ | 2.1秒/词 |
70B参数 | 32GB+ | 4.5秒/词 |
开发者进阶技巧
-
混合精度加速:在Modelfile中添加
PARAMETER fp16 true
启用FP16计算 -
多模态支持:使用
llava
模型解析图片ollama run llava "描述这张图 /path/to/image.png"
-
API集成:通过REST接口调用模型服务
import requests
response = requests.post('http://localhost:11434/api/generate', json={
"model": "deepseek-r1",
"prompt": "解释量子纠缠现象"
})
总结
Ollama重新定义了本地大模型部署的便捷标准。无论是开发者快速搭建AI原型,还是研究者进行模型对比测试,亦或是普通用户探索生成式AI,通过其简洁的命令行交互和智能化的资源管理,让每个人都能在个人电脑上轻松驾驭前沿AI技术。配合DeepSeek等中文优化模型,更可解锁符合本土需求的智能应用场景。
项目地址:https://github.com/ollama/ollama
程序员为什么要学大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓