Ollama:大模型一键部署工具,轻松安装DeepSeek到本地

Ollama是什么?
Ollama是一款开源的本地大语言模型(LLM)运行框架,支持Linux/macOS/Windows多平台。它通过简单的命令行工具,让用户无需复杂配置就能在本地运行Llama、DeepSeek、Phi等前沿AI模型。通过智能化的依赖检测、自动GPU加速支持,以及轻量级架构设计,Ollama将大模型部署门槛降到新低。


核心功能亮点

  • 开箱即用:预置Llama3、DeepSeek-R1等20+热门模型库,支持ollama run命令直接调用

  • 硬件适配:自动识别NVIDIA/AMD显卡,智能安装CUDA/ROCM驱动组件

  • 跨平台:支持Docker部署,提供Python/JavaScript客户端库

  • 自定义扩展:允许通过Modelfile修改模型参数、添加个性对话模板

  • 资源友好:最小1.4B参数的moondream模型仅需829MB内存即可运行


三步完成安装(以Linux为例)

# 执行自动化安装脚本(支持amd64/arm64架构)  
curl -fsSL https://ollama.com/install.sh | sh  
  
# 验证安装结果(显示版本号即成功)  
ollama --version  

安装过程自动完成以下关键步骤:

  1. 创建/usr/local/bin/ollama可执行文件

  2. 配置systemd服务实现开机自启

  3. 检测NVIDIA显卡时自动部署CUDA驱动

  4. 对WSL2环境进行特殊适配



实战:部署DeepSeek-R1模型

# 拉取最新版DeepSeek模型(约5.6GB)  
ollama pull deepseek-r1  
  
# 启动交互式对话  
ollama run deepseek-r1  
>>> 请用七言绝句描写江南春色  

性能需求参考表

模型规模推荐内存典型响应时间
3B参数2GB+0.8秒/词
7B参数8GB+1.2秒/词
13B参数16GB+2.1秒/词
70B参数32GB+4.5秒/词

开发者进阶技巧

  1. 混合精度加速:在Modelfile中添加PARAMETER fp16 true启用FP16计算

  2. 多模态支持:使用llava模型解析图片ollama run llava "描述这张图 /path/to/image.png"

  3. API集成:通过REST接口调用模型服务

import requests  
response = requests.post('http://localhost:11434/api/generate', json={  
  "model": "deepseek-r1",  
  "prompt": "解释量子纠缠现象"  
})  

总结
Ollama重新定义了本地大模型部署的便捷标准。无论是开发者快速搭建AI原型,还是研究者进行模型对比测试,亦或是普通用户探索生成式AI,通过其简洁的命令行交互和智能化的资源管理,让每个人都能在个人电脑上轻松驾驭前沿AI技术。配合DeepSeek等中文优化模型,更可解锁符合本土需求的智能应用场景。

项目地址:https://github.com/ollama/ollama

程序员为什么要学大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值