建议大家尽早开始搭建个人知识库

前言:当信息过载遭遇AI革命

97.3%的人正在经历「数据肥胖症」 每天人均接收信息量高达34GB,但有效转化率不足0.7%。斯坦福研究显示:那些能驾驭AI的5%精英群体,知识复用效率是常人的23倍。

真正的危机不是AI替代人类,而是人类沦为AI的数据附庸 我们正站在认知革命的临界点:

  • 初级思维: 信息收集 → 手动整理 → 随机调用(效率天花板:200卡路里/小时)

  • 进化思维: AI采集 → 智能加工 → 强化外脑(效率爆发点:20000卡路里/小时)

浏览器书签的逆袭:从「数字坟场」到「知识金矿」的AI改造指南


或许我们大家每天都在进行海量的知识搜索,也在年复一年的把浏览器中优质的内容添加到书签当中,可是等到下次遇到相同的问题依然会去使用搜索引擎,或者使用AI工具进行搜索,我们保存在浏览器中成千上万的书签,能利用到的可能都不足3%。在大模型磅礴发展的今天,信息腐烂在手里是相当可怕的事情,我们应该想办法重复利用这些花时间和精力收集的知识。

AI时代书签管理四步进化论

Step 1 自动化采集:告别手动保存

  • 工具方案:

  • Raindrop.io 自动同步浏览器/移动端书签

  • Omnivore 实现「稍后读+AI摘要」一体化

  • AI增强点:

  
`# 自动提取关键信息     def process_bookmark(url):         提取网页正文        → GPT生成3要点摘要 → 打上智能标签`  

Step 2 动态分类:超越文件夹思维

  • 三维分类体系:
  
`1. 领域维度:#市场营销 #AI     2. 价值维度:⭐核心参考/⚡前沿动态/📁历史存档     3. 形态维度:📄报告/🎥视频/💻工具` 
  • 智能打标:用ChatGPT分析内容自动生成标签(如#AIGC-视频生成)

Step 3 深度整合:打通知识孤岛

  • 双向链接策略:

  • 在Obsidian/Logseq中通过[[ ]]关联书签与本地笔记 -示例:[[消费者行为分析报告]]→关联相关书签 +会议纪要+用户调研数据[[消费者行为分析报告]]→关联相关书签+会议纪要+用户调研数据

Step 4 智能代谢:对抗信息熵增

  • 自动化保鲜系统:
  1. 每周检查链接有效性(使用LinkChecker)

  2. 每月用GPT评估内容时效性(如标注「2023年前营销策略已过时」)

  3. 季度性归档低价值书签(基于点击率+关联笔记数量)

2024书签管理工具箱

使用Cherry Studio喂数据搭建知识库


什么是Cherry Studio

Cherry Studio是由国内开发者打造的开源多模态AI开发平台,在GitHub斩获5.7k星标认证。该平台通过可视化界面实现AI应用全流程开发,特别针对中文开发者优化,提供从模型管理、知识库构建到智能体部署的一站式解决方案,已成为技术社区炙手可热的新星。

核心竞争优势解析

安全可信架构

  • 全栈开源:Apache 2.0协议保障代码透明性

  • 本地化部署:支持私有云/本地服务器部署方案

  • 数据隔离机制:企业级知识库实现物理级隔离

开发者友好设计

  • 中文文档体系:从安装指南到API文档全覆盖

  • 低代码配置:拖拽式界面+预置模板库

  • 智能调试工具:内置prompt调试沙箱

全场景AI能力矩阵

  • 多模态引擎:集成文本生成、图像合成、智能搜索

  • 扩展式架构:支持30+主流模型服务商接入

  • 智能体工厂:基于知识库的自动化工作流构建

行业应用标杆

作为华为硅基流动平台指定工具,Cherry Studio已成功应用于:

  • 制造业:设备知识库构建与故障诊断系统

  • 金融业:合规文档智能检索与风险预警

  • 教育行业:教学资源库与智能助教系统

【技术选型建议】对于需要构建本地化智能知识系统的企业,Cherry Studio凭借其开箱即用的中文支持、灵活的本地部署方案以及企业级安全特性,相较AnythingLLM等同类工具展现出显著优势。其创新的文件夹直连功能,支持实时同步本地文档库,是构建私有知识中枢的理想选择。

选择模型

先打开设置面板

在模型选择上,除了本地的 ollama 以外,其他我全部都不勾选。

添加模型

如果这里你在 ollama 中添加了多个模型,这里也会显示多个模型

Cherry Studio 的个人知识库也非常好用,下面是配置个人知识库的过程。

首先点击知识库,添加一个知识库。

上传文件和设置网站

然后回到对话窗口,创建一个“AI 学习助手”,右键选择“编辑助手”。

先配置“模型设置”,选择 DeepSeek R1,然后点击“知识库设置”,选择刚才创建的知识库。

配置完成后,我们就可以问他问题了,比如我问 “DeepSeek赋能职场”

总结


GPT-5的参数规模突破百万亿级,个人竞争力的护城河不再是知识储量,而是:

  • 如何将AI转化为认知增强器官

  • 如何让经验数据产生复利价值

  • 如何构建持续进化的数字分身

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值