
图片来源:(https://zhuanlan.zhihu.com/p/106816798) 侵删
很难想象有这样一个公式,将自然底数
e
e
e , 圆周率
π
\pi
π , 虚数
i
i
i , 自然数
0
、
1
0、1
0、1 ,紧密地联系起来,
e
i
π
+
1
=
0
e^{i\pi}+1=0
eiπ+1=0
这个公式从何而来?
最原始的公式发表于1748年,将三角函数与复变函数巧妙地关联了起来,
e
i
x
=
cos
x
+
i
sin
x
e^{ix}=\cos x+i\sin x
eix=cosx+isinx
其中,
x
x
x 为弧度制单位,
令 x = π x=\pi x=π 便得到了文章最开头的公式。
那么,如何理解这个公式呢 ?
首先,从公式自身的组成来看,包括了 e e e , i i i ,三角函数,指数函数,它的由来必然跳不开 自然底数 e e e , 复数,或许还有与旋转、圆相关的一些内容,毕竟原始公式中同时存在着 sin x \sin{x} sinx cos x \cos{x} cosx , 且 x x x 单位为弧度.
- 自然底数 e e e 的由来
e e e 最早是在研究 “复利” 时提出的,
假如张三有单位1的本金,存入银行,银行年利率为 r r r , 1年之后,本金+利息 W 1 = 1 + r W_1=1+r W1=1+r ,
如果银行1年结算两次,即每半年结算1次,那 W 2 = ( 1 + r 2 ) 2 W_2=(1+\frac{r}{2})^2 W2=(1+2r)2 ,
此时,引入银行1年结算的次数 n n n , 那 W n = ( 1 + r n ) n W_n=(1+\frac{r}{n})^n Wn=(1+nr)n ,
如果
n
→
∞
n \to \infty
n→∞ ,
W
n
→
∞
W_n \to \infty
Wn→∞ ?, 并不会,
W
n
W_n
Wn 会趋向于一个确定的极限,
lim
n
→
∞
(
1
+
r
n
)
n
=
e
r
\lim_{n \to \infty}(1+\frac{r}{n})^n=e^r
n→∞lim(1+nr)n=er
而当
r
=
1
r=1
r=1 时,便会有如下结果:
lim
n
→
∞
(
1
+
1
n
)
n
=
e
\lim_{n \to \infty}(1+\frac{1}{n})^n=e
n→∞lim(1+n1)n=e
- i i i 复数乘法的几何意义
对一个复数:
a
+
b
i
a+bi
a+bi
其中,
a
a
a 为实部,
b
b
b 为虚部,以类似极坐标的形式在复平面可以表示为:

图片来源:(截图自[用几何直觉理解欧拉公式!]) 侵删
两个复数相乘实质上为:模长相乘,幅角相加

图片来源:(截图自[用几何直觉理解欧拉公式!]) 侵删
- 直面欧拉公式
前面已经给出如下公式:
lim
n
→
∞
(
1
+
r
n
)
n
=
e
r
\lim_{n \to \infty}(1+\frac{r}{n})^n=e^r
n→∞lim(1+nr)n=er
用
i
π
i\pi
iπ 替换
r
r
r ,则有:
e
i
π
=
lim
n
→
∞
(
1
+
i
π
n
)
n
e^{i\pi}=\lim_{n \to \infty}(1+\frac{i\pi}{n})^n
eiπ=n→∞lim(1+niπ)n
此时,将等式右侧看作
n
n
n 项
1
+
(
π
/
n
)
i
1+(\pi/n)i
1+(π/n)i 的乘积,这里便会用到复数乘法的几何意义,
当 n → ∞ n \to \infty n→∞ 时, 1 + ( π / n ) i 1+(\pi/n)i 1+(π/n)i 的幅角等于 π / n \pi/n π/n , n n n 项相乘,最终幅角变为 ( π / n ) ∗ n = π (\pi/n) * n=\pi (π/n)∗n=π ,即 e i π = − 1 e^{i\pi}=-1 eiπ=−1

图片来源:(截图自[用几何直觉理解欧拉公式!]) 侵删
若用
i
θ
i\theta
iθ 替换
r
r
r,则有:
e
i
θ
=
lim
n
→
∞
(
1
+
i
θ
n
)
n
=
cos
θ
+
i
sin
θ
e^{i\theta}=\lim_{n \to \infty}(1+\frac{i\theta}{n})^n=\cos \theta+i\sin \theta
eiθ=n→∞lim(1+niθ)n=cosθ+isinθ
那么,理解这样一个不算简单的公式,到底有什么用,它能用来做什么?
上面说了这么多,其实这部分才是对于我这样一个不研究数学的人最关心的问题。
我是这样的… 卷积神经网络–>卷积–>傅里叶变换–>欧拉公式
传送门