1、内容简介
略
646-可以交流、咨询、答疑
2、内容说明
略
随着互联网发展发展日趋完善,除了文字以外的各类多媒体资料也获得了更广泛的流传,特别是数字音乐越来越流行,使用者能够更方便地掌握各类的歌曲资料,一些音乐配乐工作者,歌曲爱好者,经常收集整理大量的歌曲素材,以便于在恰当的时间选择和运用,而一般这类素材在融入创作过程时,往往只保存了一些片断,并且往往还会与某些声音混合在一起,如需要再查找作品中相应的原始文件时,又记不清其信息,也就不方便使用文本检索,基于此,提供了通过指纹匹配的歌曲搜索技术,该技术可以通过记录部分的歌曲片段,然后再从本地乐库中搜索,从而得出正确结论。音乐指纹是从音乐内容中提取出来的信息,它比原始数据更紧凑,反映了音乐重要的声学特征。该系统采用音乐时域信息序列的傅里叶变换来计算出一系列能量峰值点的时频坐标,并将其与音乐指纹关联起来。本文主要研究了该系统的关键技术,包括快速傅立叶变换、指纹构造算法、信息检索原理和指纹匹配算法。在此基础上,利用matlab对系统进行了设计和实现。
上世纪60年代,Michael Kassler教授等人提出了相关课题,但进展缓慢。直到上世纪90年代,基于内容的音乐检索技术才再次得到重视,并开始迅猛发展。国外研究机构在音乐检索方面取得了很多研究成果。比如Midomi(哼唱检索网站之一),SoundHound(猎曲奇兵)等。
中国在音频检索技术领域也有很多工作和成就。例如QQ音乐APP,其应用程序上的“听歌识曲”功能可以通过录制音频快速识别原始歌曲,并且准确率很高。该应用程序还支持哼唱检索,但精确度相对较低。
虽然音乐检索技术已经发展了很多年,但仍然存在很多问题。目前,有许多实验性的哼唱检索系统,但大多数都受到用户哼唱水平的限制,很难真正解决这一问题。
总体看来,音乐指纹的研究和应用相对成熟。音乐指纹可以用作音乐的唯一标识,指从音乐中提取的音频特征。就像人类指纹一样,重复率非常低。为了获得指纹特征,我们通常需要通过短时窗傅里叶变换得到时频能量图,然后将时频间隔的峰值作为指纹特征。美国研究人员比较并评估了几种常用的指纹算法::Echoprint,Chromaprint和Landmark,其中,Landmark是一个精度高,思路清晰的较好实施方案。
本文从音乐检索功能入手,分析了国内外音乐指纹检索技术的研究现状。在原有音频片段检索功能的基础上,采用指纹匹配的方法设计了一个本地音乐检索系统。
音乐检索系统的设计主要包括快速傅立叶变换(FFT)、Landmark指纹构造算法、指纹匹配算法和信息检索原理。基于指纹匹配的方法,使用FFT变换对音频进行频域分析,运用Landmark指纹构造算法提取音乐指纹,再根据信息检索原理,建立倒排索引结构,然后进一步利用指纹中的伴随信息达到精确检索的目的,由此设计一个本地音乐检索系统。

3、仿真分析
略




4、参考论文
朱布裔. 基于指纹匹配的音乐检索系统的设计与实现[D].华中科技大学,2017.