本地部署私人知识库的大模型!Llama 3 + RAG!

在今天的的教程中,我们将打造更加个性化的大模型,可以定制搭载私人知识库的本地大模型!

我们探讨Meta AI 的尖端 Llama 3 语言模型构建强大的检索增强生成 (RAG) 来实现。通过利用 Llama 3 和 RAG 技术的功能,我们将创建一个应用程序,允许用户与网页进行交互式对话,检索定制化、私人知识库的相关信息并生成对用户查询的准确响应。在本教程中,我们将深入探讨设置开发环境、加载和处理网页数据、创建嵌入和向量存储以及实现 RAG 链以提供卓越用户体验的分步过程。

什么是Llama 3?

Llama 3 是由 Meta AI 开发的最先进的语言模型,擅长理解和生成类似人类的文本。

  • 凭借其令人印象深刻的自然语言处理能力,Llama 3 可以理解复杂的查询、提供准确的响应并参与与上下文相关的对话。

  • 它能够处理广泛的主题和处理效率,使其成为构建智能应用程序的理想选择。

  • 想测试Llama 3的威力吗?立即与 Anakin AI 聊天!(它支持任何可用的 AI 模型!

什么是RAG?

检索增强生成 (RAG) 是一种将信息检索和语言生成相结合以提高问答系统性能的技术。

  • 简单来说,RAG 允许 AI 模型从知识库或文档中检索相关信息,并使用该信息对用户查询生成更准确和上下文适当的响应。

  • 通过利用检索和生成的强大功能,RAG 能够创建智能聊天机器人和问答应用程序,为用户提供高度相关和信息丰富的响应。

  • 对于想要在没有编码经验的情况下运行 RAG 系统的用户,您可以尝试 Anakin AI,在那里您可以使用 No Code Builder 创建很棒的 AI 应用程序!

运行本地 Llama 3 RAG 应用的先决条件

在开始之前,请确保已安装以下先决条件:

  • Python 3.7 or higher

  • Streamlit

  • ollama

  • langchain

  • langchain_community

您可以通过运行以下命令来安装所需的库:

pip install streamlit ollama langchain langchain_community  

使用 Llama-3 在本地运行您自己的 RAG 应用程序的分步指南

第 1 步:设置 Streamlit 应用程序

首先,让我们设置 Streamlit 应用程序的基本结构。创建一个名为 app.py 的新 Python 文件,并添加以下代码:

import streamlit as st  
import ollama  
from langchain.text_splitter import RecursiveCharacterTextSplitter  
from langchain_community.document_loaders import WebBaseLoader  
from langchain_community.vectorstores import Chroma  
from langchain_community.embeddings import OllamaEmbeddings  
  
st.title("Chat with Webpage 🌐")  
st.caption("This app allows you to chat with a webpage using local Llama-3 and RAG")  
  
# Get the webpage URL from the user  
webpage_url = st.text_input("Enter Webpage URL", type="default")  

此代码设置 Streamlit 应用程序的基本结构,包括标题、说明和供用户输入网页 URL 的输入字段。

步骤 2:加载和处理网页数据

接下来,我们需要从指定的网页加载数据并对其进行处理以供进一步使用。将以下代码添加到 app.py

if webpage_url:  
    # 1. Load the data  
    loader = WebBaseLoader(webpage_url)  
    docs = loader.load()  
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=10)  
    splits = text_splitter.split_documents(docs)  

在这里,我们使用 WebBaseLoader from langchain_community 来加载网页数据。然后,我们使用 RecursiveCharacterTextSplitter from langchain 将加载的文档拆分为更小的块。

第 3 步:创建 Ollama 嵌入和矢量存储

为了能够从网页中有效地检索相关信息,我们需要创建嵌入和向量存储。添加以下代码:

    # 2. Create Ollama embeddings and vector store  
    embeddings = OllamaEmbeddings(model="llama3")  
    vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)

我们使用 from OllamaEmbeddings langchain_community 类创建 Ollama 嵌入并 llama3 指定模型。然后,我们使用该 Chroma 类创建一个向量存储,传递拆分文档和嵌入。

第 4 步:定义 Ollama Llama-3 模型函数

现在,让我们定义一个函数,该函数利用 Ollama Llama-3 模型根据用户的问题和相关上下文生成响应。添加以下代码:

    # 3. Call Ollama Llama3 model  
    def ollama_llm(question, context):  
        formatted_prompt = f"Question: {question}\n\nContext: {context}"  
        response = ollama.chat(model='llama3', messages=[{'role': 'user', 'content': formatted_prompt}])  
        return response['message']['content']

此函数将用户的问题和相关上下文作为输入。它通过组合问题和上下文来格式化提示,然后使用该 ollama.chat 函数使用 Llama-3 模型生成响应。

第 5 步:设置 RAG 链

为了根据用户的问题从向量存储中检索相关信息,我们需要设置 RAG(Retrieval Augmented Generation)链。添加以下代码:

    # 4. RAG Setup  
    retriever = vectorstore.as_retriever()  
  
    def combine_docs(docs):  
        return "\n\n".join(doc.page_content for doc in docs)  
  
    def rag_chain(question):  
        retrieved_docs = retriever.invoke(question)  
        formatted_context = combine_docs(retrieved_docs)  
        return ollama_llm(question, formatted_context)  
  
    st.success(f"Loaded {webpage_url} successfully!")

在这里,我们使用该 as_retriever 方法从向量存储创建一个检索器。我们定义了一个帮助程序函数 combine_docs ,将检索到的文档组合成一个格式化的上下文字符串。该 rag_chain 函数接受用户的问题,使用检索器检索相关文档,将文档组合到格式化的上下文中,并将问题和上下文传递给 ollama_llm 函数以生成响应。

第 6 步:实现聊天功能

最后,让我们在 Streamlit 应用程序中实现聊天功能。添加以下代码:

    # Ask a question about the webpage  
    prompt = st.text_input("Ask any question about the webpage")  
  
    # Chat with the webpage  
    if prompt:  
        result = rag_chain(prompt)  
        st.write(result)

此代码添加一个输入字段,供用户询问有关网页的问题。当用户输入问题并提交时,将使用用户的问题调用该 rag_chain 函数。然后,生成的响应将使用 st.write 显示。

最后一步:是时候运行应用程序了!

若要运行该应用,请保存 app.py 文件并打开同一目录中的终端。运行以下命令:

streamlit run app.py  

这将启动 Streamlit 应用程序,您可以在 Web 浏览器中通过提供的 URL 访问它。

结论

你已成功构建了在本地运行的 Llama-3 的 RAG 应用。该应用程序允许用户利用本地 Llama-3 和 RAG 技术的强大功能与网页聊天。用户可以输入网页 URL,应用程序将加载和处理网页数据,创建嵌入和向量存储,并使用 RAG 链检索相关信息并根据用户的问题生成响应。

根据需要添加更多功能、改进用户界面或集成其他功能,您可以随意探索和增强应用程序。

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

  • 16
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值