引言
向量嵌入在现代机器学习和数据科学中已成为不可或缺的工具,它们能够将复杂数据以算法可以理解的数值格式表示。尽管密集嵌入因其能够以最小的信息损失保留语义含义而普遍存在,但随着数据量的增加,它们的计算需求和内存需求也在增加。这种增加促使开发者寻求更高效的数据表示方法。
在众多技术中,二进制嵌入作为一种引人注目的解决方案脱颖而出,它在紧凑性、计算效率和有意义的数据表示之间取得了平衡。在这篇博客文章中,我们将介绍二进制嵌入的概念,阐述它们的定义特征、优势以及与其他嵌入类型的比较优势。此外,我们将深入探讨生成二进制嵌入的方法,并展示如何使用Milvus Cloud向量数据库实现二进制嵌入搜索。
什么是向量嵌入?
在介绍二进制嵌入之前,有必要建立对向量嵌入的基础理解。
向量嵌入是离散数据项的数值表示,包括单词、句子、图像或其他元素等实体。每个项目被映射到一个包含高维空间中实数的向量。在这个空间内,相似的项目会靠得更近