Unet-Attention模型的搭建
模型原理
Attention U-Net模型来自《Attention U-Net:Learning Where to Look for the Pancreas》论文,这篇论文提出来一种注意力门模型(attention gate,AG),用该模型进行训练时,能过抑制模型学习与任务无关的部分,同时加重学习与任务有关的特征。AG可以很容易地集成到标准的CNN体系结构中,论文中是以U-net为基础进行集成,得到了Attention U-Net模型。实验表明,融入AG后,Unet模型的精度更高了。
模型搭建
Attention-Unet模型是以Unet模型为基础的,可以从以上两个图中看出,Attention-Unet和U-net的区别就在于解码时(U-net是典型的编码-解码模型(encode-decode)),从编码部分提取的部分是否直接用于解码,还是进行了Attention Gate再进行解码。
Attention Gate模型的具体操作就如上图所示,对于Attention-Unet模型中第一次AG的输入,绿色箭头就是g信号,从编码部分延伸的虚线就是xl,粉红色箭头就是输出。