将机器学习用于超表面设计,宏观光学设计新方法?

研究人员采用卷积神经网络提出了一种新型全息超表面设计方案,利用机器学习技术直接将电场分布和输入图像映射到超表面上,简化了设计过程并提高了精度。这种方法减少了传统超表面设计的复杂性和耗时,展示了机器学习在宏观光学设计中的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近年来,超表面结构的光学技术开始受到越来越多关注,超表面是一种二维超材料,它可以在亚波长范围内,灵活调控入射光的振幅、相位和偏振,具有强大的光场操控能力,并且可实现传统光学不具备的功能。由于这种电磁波灵活调制的特性,超表面可以有多种用途,比如超材料完美吸收器(MPA)、隐形装置、平面超透镜和超表面全息显示等等。

超表面技术在开发和改进光学、微波器件方面体现出很好的效果,也丰富了全息方案的设计和应用场景。比如制造薄如发丝的微型透镜(Metalens),应用于摄像头、医疗器械、车载传感器/雷达、AR/VR、全息显示等场景。不过,由于工艺复杂等因素,目前还不适合大规模生产。

为了改善上述情况,中国人民解放军空军工程大学的科研人员提出了一种新的全息超表面(CAHMs)设计方案,该方案名为“基于电场图案的单片式全息超表面设计”,特点是通过卷积神经网络(CNN)实现残差编码和解码,并用电场图案直接设计全息超表面。在这项研究中,重点描述了生成全息超表面所使用的深度学习方案,其特点是制造工艺、设计结构简单,实用性强。

简单来讲,就是利用卷积神经网络这种机器学习技术,直接将电场分布和输入图像映射到全息超表面上,这个全息超表面上本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值