yolov8下实现绿萝识别

本文档详细介绍了如何使用yolov8框架训练一个专门识别绿萝的模型,包括数据准备、数据标记、处理标记文件、训练数据、编写训练代码以及模型预测的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一:背景

二:过程


一:背景

上一节我们学习了yolov8自带模型的使用,这一节我们讲解下yolov8的数据训练,生成模型来识别绿萝。

二:过程

1:数据准备,我们可以自己收集绿萝的图片,最起码需要准备几百张的图片。我们这里通过网络下载图片保存到一个目录等待处理。

2:数据标记

我们对绿萝图片进行标记,使用labelImg来进行标记。如果没有安装需要安装

pip install labelImg

安装成功在图片目录打开运行命令:labelImg

打开如下选择图片进行标记:

我这里可能标记的不太准确,正常一张图片可能绿萝比较小,可以较完整的标注每个绿萝。标记完会生成xml文件。里面包含了标记的坐标和名称等信息。这里需要注意的是可以设置yolo模式,这样生成txt文件后缀的。

3:处理标记文件<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

攻城狮的梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值