周志华西瓜书《机器学习》习题提示——第5章

文章讨论了激活函数的选择标准,BP算法在神经网络中的应用,学习率对训练的影响以及其调整策略。此外,提到了RBF网络、SOM神经网络和Elman网络在解决问题中的角色,以及卷积神经网络在手写数字识别中的应用。
摘要由CSDN通过智能技术生成

习题提示

5.1:理想的激活函数能很好地体现激活与抑制的两种状态,如【西瓜书图5.2(a)】所示,其中,抑制状态用0表示而不用-1,是由于乘法中0的特殊性刚好符合“抑制”的要求。 为数学计算方便,应选择能逼近理想激活函数的、且数学性质好(如,易求导)的函数作为激活函数,如【西瓜书图5.2(b)】所示。

题中的线性函数不能逼近理想激活函数,因为它的“样子”为:(1)无界,要再串联一个分段函数才能转化成二分类时;(2)关于原点对称,形成正激励和负激励,起不到抑制作用。

5.2:
参见5.1 误差逆传播算法(BP算法)神经元模型的最后一段:
对率回归由【西瓜书(3.18)(3.19)】描述,而题中所述神经元由【西瓜书图5.1】右上角公式及【西瓜书图5.2(b)】的公式描述。 比较二者知:公式是一致的(记 θ = − b \theta =-b θ=b)。 二者的解释意义反映不同的侧面:一个是从概率角度,一个是从神经元角度。 结合起来就是:神经元的输出可以视为样本为正例的概率。

5.3:
仿【西瓜书p.102-103】中 w h j w_{hj} whj相关公式的推导,详细推导5.4 BP算法的高级表达

5.4:
学习率实际为沿负梯度方向前进的步长,当步长过小时,一方面收敛速度较慢,另一方面易陷入局部极小而不能自拔;当步长过大时,在目标函数最小值附近时,易跨过最小值(即错过收敛到最小值的机会),产生震荡。 通常采用逐步减小学习率的策略。

5.5:

编程方面可以到网上搜索参考材料,这里,我们推导和讨论累计BP算法。

参见5.1 误差逆传播算法(BP算法)中的“累计BP算法”

神经网络的输入为数字特征,然而,题中的数据集【西瓜书表4.3】包含有非数字特征,如,色泽 ∈ { 青绿,乌黑,㳀白 } \in\{ \text {青绿,乌黑,㳀白}\} {青绿,乌黑,㳀},需要数字化。 我们将这种“数据字典式”的特征改造为“判断式”(1表示是,0表示不是),即以(1,0,0)、(0,1,0)、(0,0,1)分别表示这三种色泽,这样,特征“色泽”由一维扩展成了三维,实现了数字化。

5.6:学习率 0 < η < 1 0<\eta <1 0<η<1

(1)基于时间 t t t(即迭代次数)的调整策略:

作一个递减地趋于0的数列: η 1 , η 2 , η 3 , ⋯ {\eta}_1,{\eta}_2,{\eta}_3,\cdots η1,η2,η3,(例如, η k = 0. 9 k {\eta}_{k}=0.9^k ηk=0.9k),然后,每迭代一次(或其它次数)更换下一个 η k {\eta}_k ηk

(2)基于梯度的调整学习率:

当点的梯度较大时,处于较陡的位置,很可能离最终收敛还有一段较远的距离,因此,应选较大的学习率以加大前进步子,反之,当梯度较小时,可能接近收敛处,应使用较小的学习率进行谨慎搜索。 例如,取梯度(或历史梯度)的 L 2 L_2 L2范数的倒数作为缩放学习率的因子,如:
η ⋅ 1 r + δ \begin{align} \eta \cdot\frac{1}{\sqrt{\boldsymbol{r}}+\delta } \end{align} ηr +δ1
其中, r \sqrt{\boldsymbol{r}} r 为梯度的 L 2 L_2 L2范数, δ \delta δ是为防止分母为0并保证分式小于1.

5.7:
参见5.2 RBF网络(单层RBF就可解决异或问题)与ART网络(实现“自适应谐振”)中的“图5.5 单层RBF神经网络”的讨论。

5.8:
参见5.3 SOW网络、Elman网络、Boltzmann机中的“图5.8 SOM神经网络”的讨论。

编程或下载程序实现算法。

5.9:
参见5.3 SOW网络、Elman网络、Boltzmann机中的“Elman网络”的讨论。

5.10:易从网上找到用于手写数字识别的卷积神经网络程序,如果自己编的话,可以先编一些子网(功能部件),再由这些子网构成卷积神经网络,再进行参数训练。

本文为原创,您可以:

  • 点赞(支持博主)
  • 收藏(待以后看)
  • 转发(他考研或学习,正需要)
  • 评论(或讨论)
  • 引用(支持原创)
  • 不侵权

上一篇:周志华西瓜书《机器学习》习题提示——第4章
下一篇:6.1 支持向量机SVM的基本型(对偶要KKT条件,不是找对象的条件)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值