QLoRA论文概述

QLoRA论文概述

前言(省流版本)

微调需要大量显存资源。

之前工作的量化大都是在推理而非训练。

实验中发现数据的质量比数量重要。

评估采用人类和GPT-4相结合。

提出了三个技术方案实现单个GPU微调65B模型,达到和16位微调任务相同的性能

  • 4-bit NormalFloat(NF4)量化:QLORA使用一种新的数据类型NF4,它在信息理论上最适合正态分布的权重,并在实践中优于4-bit整数和4-bit浮点数。
  • 双量化:QLORA采用双量化方法,对量化常数进行第二次量化,从而减少每个参数的内存占用。
  • 分页优化器:QLORA引入了分页优化器,在梯度检查点时防止内存溢出错误。这个方法使用NVIDIA统一内存特性,在CPU和GPU之间自动进行页面到页面的传输,以便在GPU内存不足时进行无错误的GPU处理。优化器状态分配分页内存,然后在GPU运行内存不足时自动逐出到CPU RAM,并在优化器更新步骤中重新分页到GPU内存。

摘要

我们提出了QLORA,这是一种有效的微调方法,它减少了内存使用,足以在单个48GB GPU上微调65B参数模型,同时保留完整的16位微调任务性能。

QLORA通过冻结的4位量化预训练语言模型将梯度反向传播到低秩适配器(Low Rank Adapters, LoRA)。我们最好的模型家族,我们命名为Guanaco,在Vicuna基准上优于之前所有公开发布的模型,达到ChatGPT性能水平的99.3%,而只需要在单个GPU上进行24小时的微调。

QLORA引入了许多创新来节省内存而不牺牲性能:(a) 4位NormalFloat (NF4),这是一种新的数据类型,理论上对正态分布权重是最优的;(b)双量化,通过量化量化常量来减少平均内存占用;©分页优化器来管理内存峰值。

我们使用QLORA对1000多个模型进行了微调,提供了8个指令数据集、多种模型类型(LLaMA、T5)和常规微调无法运行的模型规模(例如33B和65B参数模型)上的指令跟随和聊天机器人性能的详细分析。

我们的结果表明,即使使用比以前的SoTA更小的模型,在小的高质量数据集上进行QLoRA微调也可以得到最先进的结果。我们提供了基于人类和GPT-4评估的聊天机器人性能的详细分析,表明GPT-4评估是人类评估的廉价和合理的替代方案。

此外,我们发现目前的聊天机器人基准并不值得信赖,无法准确评估聊天机器人的性能水平。一个柠檬分析显示了与ChatGPT相比,Guanaco失败的地方。我们发布了所有的模型和代码,包括用于4位训练的CUDA内核

论文十问

  1. 论文试图解决什么问题?

这篇论文试图解决大规模语言模型微调(finetuning)所需的巨大GPU内存问题,以使这类模型能在单GPU上进行微调。

  1. 这是否是一个新的问题?

是的,这是一个新的问题。以前的工作主要集中在推理时的量化,而没有研究过训练和微调过程中的量化。

  1. 这篇文章要验证一个什么科学假设?

这篇论文的核心科学假设是4比特量化微调可以不损失性能地实现16比特完全微调的效果。

  1. 有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员?

相关研究包括语言模型量化、低秩适配器微调等。值得关注的研究员有Tim Dettmers、Luke Zettlemoyer等。

  1. 论文中提到的解决方案之关键是什么?

关键的解决方案是提出了4比特NormalFloat数据类型,以及双量化和分页优化器等技术。这些技术协同工作,实现了高精度的4比特量化。

  1. 论文中的实验是如何设计的?

设计了不同模型结构、数据集和模型规模的比较实验,通过学术基准测试验验证了方法的有效性。

  1. 用于定量评估的数据集是什么?代码有没有开源?

使用的数据集包括GLUE、Super-Natural Instructions等,代码已在GitHub上开源。

  1. 论文中的实验及结果有没有很好地支持需要验证的科学假设?

是的,详细的实验结果充分验证了4比特量化微调能够不损失性能地实现16比特完全微调的效果这个核心科学假设。

  1. 这篇论文到底有什么贡献?

这篇论文的主要贡献是首次证明了4比特量化微调的有效性,并在此基础上训练出新状态的聊天机器人模型。

  1. 下一步呢?有什么工作可以继续深入?

后续可继续研究不同bit精度下的量化微调效果、在更大模型尺寸下的验证,以及在其他任务上的探索等。

实验

实验1

数据集和模型

GLUE、Super-Natural Instructions

RoBERTa-large 、T5

实验结论

我们的结果一致表明,具有NF4数据类型的4位QLORA在学术基准测试中具有良好的评估设置,与16位全调优和16位LoRA调优性能相匹配。我们还表明NF4比FP4更有效,双量化不会降低性能。综合起来,这形成了令人信服的证据,证明4位QLORA调优可靠地产生与16位方法相匹配的结果。

在这里插入图片描述

实验2

数据集和模型

MMLU:这是一个选择题基准,涵盖57个任务,包括小学数学、美国历史、计算机科学、法律等。

Alpaca、FLAN V2

实验结论

在Alpaca和FLAN v2上对不同数据类型的适配器进行微调后,LLaMA 7-65B模型的平均5次MMLU测试精度。总体而言,具有双量化(DQ)的NF4与BFloat16性能相当,而FP4始终比两者落后一个百分点。

在这里插入图片描述

局限性

模型尺度

在33B和65B模型尺度上,QLORA可能无法完全匹配16位全微调性能。这主要是由于资源成本巨大

数据集

虽然在MMLU、Vicuna基准和OA基准上进行了评估,但在BigBench、RAFT和HELM等其他基准上没有进行评估,因此无法确保评估结果推广到这些基准。

其他微调方法

除了LoRA之外,还有各种各样的参数有效微调(PEFT)方法没有参与到评估中。

<think>嗯,用户让我介绍一下LoRa大模型微调。首先,我需要回忆一下LoRa的基本概念和相关知识。LoRa全称是Low-Rank Adaptation,是一种用于微调大语言模型的技术。记得它主要是通过低秩矩阵分解来减少训练参数的数量,这样可以在保持效果的同时降低计算资源的需求。 接下来,我得考虑用户的背景。他们可能是机器学习从业者或者研究者,尤其是那些在自然语言处理领域工作的人。用户可能已经了解过传统的微调方法,比如全参数微调,但遇到资源消耗大的问题,所以想寻找更高效的替代方案。也有可能用户是刚开始接触大模型微调,想了解不同的技术选项。 用户的需求可能包括了解LoRa的原理、优势、应用场景以及如何实现。需要分步骤解释,确保结构清晰。可能需要比较LoRa和传统微调的区别,突出其优点,比如参数效率、资源节省等。另外,用户可能想知道实际应用中的例子,比如在哪些任务中使用LoRa效果比较好,或者有没有现成的库可以使用。 还要注意用户可能存在的疑问,比如LoRa是否会影响模型性能,或者它的局限性在哪里。比如,虽然LoRa减少了参数,但在某些复杂任务上可能不如全参数微调有效,这时候需要权衡。此外,可能需要提到相关的技术,如Adapter Tuning或Prompt Tuning,帮助用户理解不同方法的差异。 在组织回答时,应该先概述LoRa是什么,然后详细说明其工作原理,接着讨论优缺点,再给出应用场景,最后提供实现建议或工具。确保每个部分都有足够的细节,但不过于技术化,保持易懂。同时,需要检查LaTeX格式是否正确,比如所有数学表达式用$...$包裹,独立公式用$$...$$,并且正确使用中文。 还要注意用户可能的深层需求,比如他们是否在寻找实际操作的指南,或者是否更关心理论背景。这时候需要平衡理论与实践的信息量。例如,在实现部分提到Hugging Face的PEFT库,这可以帮助用户快速上手,而理论部分解释低秩分解如何减少参数。 最后,确保回答真实可靠,引用正确的论文或权威来源,比如提到LoRa的提出者或相关研究,增加可信度。同时,语言要简洁明了,避免术语堆砌,让不同层次的读者都能理解。</think>好的,我将分步骤为您介绍LoRa大模型微调技术: 1. **基本概念** LoRa(Low-Rank Adaptation)是一种针对大语言模型的高效微调方法,由微软研究院在2021年提出。其核心思想是通过**低秩矩阵分解**,仅训练少量参数即可适配下游任务,典型应用场景如:$W_{adapted} = W_{original} + \Delta W$,其中$\Delta W$被分解为两个低秩矩阵$B \cdot A$。 2. **工作原理** - 在原模型权重矩阵$W \in \mathbb{R}^{d \times k}$旁添加适配层 - 将参数增量矩阵分解为: $$\Delta W = B \cdot A \quad (B \in \mathbb{R}^{d \times r}, A \in \mathbb{R}^{r \times k})$$ 其中$r \ll \min(d,k)$为秩(rank),通常取4-64 - 仅需训练$B$和$A$,冻结原始模型参数 3. **关键优势** | 方法 | 训练参数量 | GPU显存 | 存储开销 | |---|---|----|----| | 全参数微调 | 100% | 高 | 每个任务保存完整模型 | | LoRa | 0.1%-1% | 降低60%+ | 仅保存适配器参数 | 4. **典型应用场景** - 领域适配(医疗/法律文本生成) - 多任务学习(同时适配多个任务) - 资源受限环境(单卡微调百亿参数模型) 5. **实现步骤** ```python # 使用Hugging Face PEFT库示例 from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=8, # 秩 lora_alpha=32, # 缩放系数 target_modules=["q_proj", "v_proj"], # 作用于Attention层 lora_dropout=0.1 ) model = get_peft_model(base_model, lora_config) ``` 6. **局限性** - 需要经验选择目标模块和秩大小 - 在极复杂任务上可能弱于全参数微调 - 适配器参数需要与基础模型配合使用 建议实际使用时结合QLoRa(量化+LoRa)进一步优化资源消耗,当前主流方案已支持在单张24G显卡上微调65B参数模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江小皮不皮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值