路面坑洞检测
概述
本项目实现了一个先进的路面坑洞检测系统,结合了计算机视觉和深度学习技术。通过使用YOLOv8-small模型,我们创建了一个强大且高效的解决方案,用于在道路图像和视频中识别和定位坑洞。
演示
主要特性
- YOLOv8-small模型:采用紧凑且强大的YOLOv8-small架构,能够进行实时物体检测和分割。
- 多格式输入:支持处理图像和视频,具备多种应用场景。
- 实时检测:实现快速推理,适用于移动设备和边缘设备。
- 用户友好界面:使用Streamlit实现简洁易用的交互界面。
技术栈
- 深度学习框架:YOLO (You Only Look Once) v8
- 计算机视觉:OpenCV 和 Supervision
- 数据处理:NumPy
- 用户界面:Streamlit
设置与安装
-
克隆项目仓库:
cd pothole
-
安装所需的依赖:
pip install -r requirements.txt
-
运行Streamlit应用:
streamlit run app.py
使用方法
- 使用Streamlit应用上传图像或视频进行坑洞检测。
- 根据需要调整置信度阈值和其他参数。
这个项目通过结合先进的深度学习技术与直观的用户界面,为坑洞检测提供了一个高效且便捷的解决方案。