# 三轮全向底盘运动学性能分析

## 速度分析

$\left[\begin{array}{c}{v}_{1}\\ {v}_{2}\\ {v}_{3}\end{array}\right]=\left[\begin{array}{ccc}-1& 0& a\\ \mathrm{sin}\frac{\pi }{6}& -cos\frac{\pi }{6}& a\\ \mathrm{sin}\frac{\pi }{6}& \mathrm{cos}\frac{\pi }{6}& a\end{array}\right]\left[\begin{array}{c}{v}_{x}\\ {v}_{y}\\ \omega \end{array}\right]$

${\mathbf{v}}^{T}=\left[\begin{array}{ccc}{v}_{1}& {v}_{2}& {v}_{3}\end{array}\right]$
${\mathbf{V}}^{T}=\left[\begin{array}{ccc}{v}_{x}& {v}_{y}& \omega \end{array}\right]$
,转换矩阵为
$\mathbf{R}$
，则有

$\left[\begin{array}{c}{v}_{x}\\ {v}_{y}\\ \omega \end{array}\right]=\left[\begin{array}{ccc}-\frac{2}{3}& \frac{1}{3}& \frac{1}{3}\\ 0& -\frac{\sqrt{3}}{3}& \frac{\sqrt{3}}{3}\\ \frac{1}{3a}& \frac{1}{3a}& \frac{1}{3a}\end{array}\right]\left[\begin{array}{c}{v}_{1}\\ {v}_{2}\\ {v}_{3}\end{array}\right]$

${V}_{max}=\sqrt{{v}_{x}^{2}+{v}_{y}^{2}}=\sqrt{\frac{4}{9}\left({v}_{1}^{2}+{v}_{2}^{2}+{v}_{3}^{2}-{v}_{1}{v}_{2}-{v}_{1}{v}_{3}-{v}_{2}{v}_{3}\right)}$

$\left\{{v}_{1},{v}_{2},{v}_{3}\right\}\in \left[-{v}_{m,}{v}_{m,}\right]$

$\omega =\frac{1}{3a}\left({v}_{1}+{v}_{2}+{v}_{3}\right)=0$

${v}_{1}+{v}_{2}+{v}_{3}=0$

${V}_{max}=\frac{{2v}_{m}}{\sqrt{3}}$

$\frac{{2v}_{m}}{\sqrt{3}}$

## 加速度分析

$\left[\begin{array}{c}{a}_{x}\\ {a}_{y}\\ \alpha \end{array}\right]=\left[\begin{array}{ccc}-\frac{1}{m}& \frac{1}{2m}& \frac{1}{2m}\\ 0& -\frac{\sqrt{3}}{2m}& \frac{\sqrt{3}}{2m}\\ \frac{a}{J}& \frac{a}{J}& \frac{a}{J}\end{array}\right]\left[\begin{array}{c}{f}_{1}\\ {f}_{2}\\ {f}_{3}\end{array}\right]$

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120