KafaKa Java客户端API 生产和消费

kafka地址:  http://kafka.apache.org/




在pom.xml文件中添加下面的依赖

<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
    <version>0.11.0.2</version>
</dependency>


 下面看看   生产者:

package kafkaAndJava;

import java.util.Properties;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;

public class ProducerTest {
	public static void main(String[] args) {

		Properties properties = new Properties();
		properties.put("bootstrap.servers", "hadoop002:9092");
		properties.put("acks", "all");
		properties.put("retries", 0);
		properties.put("batch.size", 16384);
		properties.put("linger.ms", 1);
		properties.put("buffer.memory", 33554432);
		properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
		properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
		Producer<String, String> producer = null;
		try {
			producer = new KafkaProducer<String, String>(properties);
			for (int i = 0; i < 100; i++) {
				String msg = "This is Message " + i;
				producer.send(new ProducerRecord<String, String>("xuhaitao", msg));
				System.out.println("Sent:" + msg);
			}
		} catch (Exception e) {
			e.printStackTrace();

		} finally {
			producer.close();

		}
	}
}

 


下面看看     消费者代码:

package kafkaAndJava;

import java.util.Arrays;
import java.util.Properties;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

public class kafkaConsumerTest {

	public static void main(String[] args) {

		Properties properties = new Properties();
		properties.put("bootstrap.servers", "hadoop002:9092"); // 指向kafka集群的IP地址
		properties.put("group.id", "	group-1"); // Consumer分组ID
		properties.put("enable.auto.commit", "true");
		properties.put("auto.commit.interval.ms", "1000"); /* 自动确认offset的时间间隔 */
		properties.put("auto.offset.reset", "earliest");
		properties.put("session.timeout.ms", "30000");

		properties.put("max.poll.records", "100");// max.poll.records条数据需要在在session.timeout.ms这个时间内处理完

		properties.put("fetch.min.bytes", "1");//server发送到消费端的最小数据,若是不满足这个数值则会等待直到满足指定大小。默认为1表示立即接收。
		properties.put("fetch.wait.max.ms", "1000");
		properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); // 反序列化
		properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); // 反序列化

		KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
		kafkaConsumer.subscribe(Arrays.asList("xuhaitao")); // 设置消费的主题
		while (true) {
			ConsumerRecords<String, String> records = kafkaConsumer.poll(100); // 调用poll方法来轮循Kafka集群的消息,其中参数100是超时时间
			for (ConsumerRecord<String, String> record : records) {
				System.out.printf("offsetConsumer = %d, value = %s", record.offset(), record.value());
				System.out.println();
			}
		}

	}

}

 

 

FR:徐海涛(hunk Xu)
QQ技术交流群:386476712

1/kafka是一个分布式的消息缓存系统 2/kafka集群中的服务器都叫做broker 3/kafka有两类客户端,一类叫producer(消息生产者),一类叫做consumer(消息消费者),客户端和broker服务器之间采用tcp协议连接 4/kafka中不同业务系统的消息可以通过topic进行区分,而且每一个消息topic都会被分区,以分担消息读写的负载 5/每一个分区都可以有多个副本,以防止数据的丢失 6/某一个分区中的数据如果需要更新,都必须通过该分区所有副本中的leader来更新 7/消费者可以分组,比如有两个消费者组A和B,共同消费一个topic:order_info,A和B所消费的消息不会重复 比如 order_info 中有100个消息,每个消息有一个id,编号从0-99,那么,如果A组消费0-49号,B组就消费50-99号 8/消费者在具体消费某个topic中的消息时,可以指定起始偏移量 每个partition只能同一个group中的同一个consumer消费,但多个Consumer Group可同时消费同一个partition。 n个topic可以被n个Consumer Group消费,每个Consumer Group有多个Consumer消费同一个topic Topic在逻辑上可以被认为是一个queue,每条消费都必须指定它的Topic,可以简单理解为必须指明把这条消息放进哪个queue里。为了使得Kafka的吞吐率可以线性提高,物理上把Topic分成一个或多个Partition,每个Partition在物理上对应一个文件夹,该文件夹下存储这个Partition的所有消息和索引文件。若创建topic1和topic2两个topic,且分别有13个和19个分区 Kafka的设计理念之一就是同时提供离线处理和实时处理。根据这一特性,可以使用Storm这种实时流处理系统对消息进行实时在线处理,同时使用Hadoop这种批处理系统进行离线处理,还可以同时将数据实时备份到另一个数据中心,只需要保证这三个操作所使用的Consumer属于不同的Consumer Group即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值