在做单细胞数据增强中,特别是生成模型中,必对比的方法就是scvi。但scvi并不好安装上,这个是记录安装成功过程。
一.cuda Toolkit安装
先通过命令查看自己的cuda版本,nvidia-smi
如我的如下:12.0的。
然后在通过,uname -m查看自己的架构,我的是x86_64的。
接着查看自己的ubuntu版本,命令:cat /etc/os-release
通过如下网站下载对应的toolkit版本。
https://developer.nvidia.com/cuda-12-0-0-download-archive
按照下面的命令进行安装即可。
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-keyring_1.0-1_all.deb
sudo dpkg -i cuda-keyring_1.0-1_all.deb
sudo apt-get update
sudo apt-get -y install cuda
但安装好,之后出错了,需要重启。
nvidia-smi
Failed to initialize NVML: Driver/library version mismatch
重启:reboot
重新查看版本:变成12.2了。
在这里插入一条后期记录(2024年3月25日12:52:12:),有次同事不知怎么操作,远程Ubuntu连接黑屏,原因是他安装torch的时候,不懂安装,有安装了cuda相关,导致GPU驱动出错。重启之后,我的gpu果然不行了。
出错如下:
~$: nvidia-smi
NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.
按照上述安装后还是不行,各种依赖问题。如最后出错如下。
dpkg: 处理软件包 cuda (--configure)时出错:
依赖关系问题 - 仍未被配置
正在处理用于 initramfs-tools (0.136ubuntu6.7) 的触发器 ...
update-initramfs: Generating /boot/initrd.img-5.15.0-101-generic
在处理时有错误发生:
nvidia-dkms-470
nvidia-driver-470
cuda-drivers-470
cuda-drivers
cuda-runtime-11-4
cuda-11-4
cuda-demo-suite-11-4
cuda
还好之前安装记录了,cuda版本是12,那同样的要查看自己的系统是什么。然后才安装。这时就需要本地安了。如我的安装如下。
相应代码:全部复制过去,安装就可以了。
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/12.0.0/local_installers/cuda-repo-ubuntu2004-12-0-local_12.0.0-525.60.13-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2004-12-0-local_12.0.0-525.60.13-1_amd64.deb
sudo cp /var/cuda-repo-ubuntu2004-12-0-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda
不用重启就好了
2024年4月23日13:49:28:这次又坏了,而且按照上面本地安装,出错。
最后一步出错:
cuda : 依赖: cuda-12-0 (>= 12.0.0) 但是它将不会被安装 E: 无法修正错误,因为您要求某些软件包保持现状,就是它们破坏了软件包间的依赖关系。
什么安装dkms这些都没用,提示缺少dims.conf
最后解决是:
那参考了这个:
https://blog.csdn.net/fanstering/article/details/130198378
安装aptitude替换apt-get进行安装
sudo apt-get install aptitude
sudo aptitude install cuda
一路按Yes;最后没用他的,用我上面的local,因为已经下载好了。
这时只需要运行这几部即可:
sudo dpkg -i cuda-repo-ubuntu2004-12-0-local_12.0.0-525.60.13-1_amd64.deb
sudo cp /var/cuda-repo-ubuntu2004-12-0-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda
就可以成功安装了。成功后:
注意下面是没用的,搞了几天,不行,xorg不行,那就换VNC方式
又过了段时间,又出错了。2024年5月16日11:59:26;而且按照这种方法sudo aptitude install cuda;不断的按yes;
还是没好,重启之后,发生悲剧:
Ubuntu-desktop都坏了,xorg连接不上。看xrdp是好的,xorg服务状态是好的。
sudo systemctl status xrdp
connecting to sesman ip 127.0.0.l port 3350
sesman connect ok
sending login info to session manager, please wait …
login successful for display 11
started connecting
connection problem, giving up
some problem
其次换了换了清华元,还是不好,还好备份source.list是阿里源的。就用这个,但
update出错下列:
E: Method https has died unexpectedly!
E: Sub-process https received signalxs 4.
只能用这个:
sudo GNUTLS_CPUID_OVERRIDE=0x1 apt-get update
在接着安装
sudo apt-get install -y ubuntu-desktop
在查看是否好了:
dpkg -s ubuntu-desktop
dpkg -l ubuntu-desktop
这些都不好。xorg是用不成了,那就不用他了,折腾几天,换成VNC
方式一、安装配置tigervnc
主机系统是ubuntu20.04,安装tigervnc很简单:
sudo apt install tigervnc-common
sudo apt install tigervnc-standalone-server
安装好之后,直接启动:
vncserver -localhost no -geometry 1920x1080 :1
-localhost no 需要加上才能支持远程访问
-geometry 设置远程分辨率
:1 远程绘话号
vncserver -list 可以列出当前的会话列表
vncserver -kill id 可以关掉对应的远程会话
然后通过这种连接即可:
或者直接用软件MobaXterm(推荐
参考:https://blog.csdn.net/qq_45516773/article/details/132072500
那这样的方式就能登录了。我的cuda又安装成了cuda 12.4;这次:
一、Miniconda3的下载和安装
在用户主界面,运行以下代码。
#下载miniconda3
wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
#运行sh文件
bash Miniconda3-latest-Linux-x86_64.sh
bash之后,回车,然后按空格跳到最后。最后选择yes,完成安装。
我的就默认安装;
路径:/home/jx-vmlab/miniconda3
然后source /home/XXX/.bashrc会激活conda环境。会在终端的bash提示前多一个(base)。
之后conda就可以用了,
三、安装scvi;
可以根据这个网页的步骤安装:
https://docs.scvi-tools.org/en/stable/installation.html
我的安装如下:
conda create -n lry_scvi python=3.9
conda activate lry_scvi
#但安装这个没用找到,就按照他的按照11.7吧。
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
conda install jax jaxlib -c conda-forgey
安装scvi
pip install scvi-tools
查看是否可用,python,命令。出现下列版本号说明可以用了。
import scvi
print(scvi.version)
四、安装jupyter notebook
配置密码:注意notebook不能是7以上的版本,需要降级;notebook 6.4.11;要不然不能配置密码。提示出错。
----> 1 from notebook.auth import passwd
ModuleNotFoundError: No module named 'notebook.auth'
参考这个https://blog.csdn.net/benobug/article/details/122152707
生成密钥,添加这个配置即可。c.NotebookApp.password
4、修改配置文件
使用vim打开jupyter notebook的配置文件
vim ~/.jupyter/jupyter_notebook_config.py
1
找到c.NotebookApp.password这一行,取消注释并修改它的值为我们用python生成的密文
c.NotebookApp.password = u’sha:xxx’ # 刚才复制的那个密码指纹
看来新版notebook,和以前不一样。
但后面发现GPU不可以用,还需要按照如下步骤安装。
https://blog.csdn.net/weixin_46833029/article/details/127946022
如我的
下载安装之后,运行以下出现true说明安装成功。
当然如果你需要安装成功调控网络对比方法,MetaSEM,,你必须安装torch版本如下。其他最新版本报错。
RuntimeError: API has changed, “state_steps” argument must contain a list of singleton tensors
这个是我安装的版本。