OCR模型DBNet-------《Real-time Scene Text Detection with Differentiable Binarization》论文,模型,代码解剖

12 篇文章 154 订阅 ¥19.90 ¥99.00
DBNet是一种融合可微分二值化的实时场景文本检测模型,通过消除复杂后处理提高检测性能。本文深入解析DBNet的论文、模型架构和代码,介绍其自适应阈值学习、变形卷积等关键点,展示在MSRA-TD500数据集上的优秀表现和高速检测能力。
摘要由CSDN通过智能技术生成

首先,我先对DBNet的论文进行重点翻译解释说明,之后再对整个模型进行解剖,最后再对官方源码的实现方法,关键代码进行分析,所以篇幅也比较长,之间会附带一些例子说明,让你更深刻的了解DBNet。

论文解析:

Abstract

基于语义分割的文本检测模型得到广泛应用,因为其对各种形状的文本,如曲线文本,都有更好的精准度。然而,用于后处理生成区域的二值化对最终的检测效果起到关键影响,在这论文,提出了可微分二值化(Differentiable Binarization (DB)),它可以融入分割网络,结合DB模块进行训练,分割网络可以自适应学习二值化阈值。这不仅简化了后处理,而且提高了文本检测的性能。最终基于ResNet-18作为backbone的整个模型,在MSRA-TD500的数据集上,取得F-measure值为82.8,62FPS的检测效果。

Introduction

对于各种不规则的文本形状,语义分割具有更优秀的检测效果,因为其是基于像素点级别的。然而,基于分割的方法,需要复杂的后处理来对像素进行分类从而分割出文本实例,这也导致需要消耗更多的推断时间。举两个文本检测例子,P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿也可以很哲学

让我尝下打赏的味道吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值