Tensoflow学习记录12--resnet网络

综述

前面俩小节已经讲了经典的alex-net和vgg网络,vgg-net在alex网络的基础上,测试了很多种加深网络的方式,得到了vgg16和vgg19最后的结果还不错,但是后来人们发现,在网络深度到达一定程度后,继续加深网络,会有俩个问题,一个是太远了,梯度消失,即数据分散在不再被激活的那个区域导致梯度为0消失了,这个可以通过norimalized核intermediate narmalization layers解决。二个是模型的准确率会迅速下滑,单并不是overfit造成的。作者提出了一个网络结构,通过重复利用输入来优化训练,结果出奇的好。

resnet网络结构

一般的,总体分为6层,第一层为一个卷积层加一个pool层,最后为一个全链接fc层,中间四层的每一层都由多个residual block组成,然后每个residual block又由2个或3个卷积层加shortcut connections(捷径,即加上了初始的输入x)组成,这样构成的深层次的卷积神经网络。

residual block

这里写图片描述
中间weight layer一般由2层或者3层卷积组成,层与层之间加上batch norimalization以及relu(何凯名再后续的文章中有提到怎么处理比较好,可以看这篇博客Binbin Xu),最后一层加上x后再relu,最为输出。
这里申明下,中间是4层,每层由多个residual block组成,每个block又由多个卷积层加上x(identity效果比较好,Binbin Xu identity好处很多,首先效果好,再者不会增加参数)

一个34层网络结构的例子

最右边即为一个32层的resnet网络,最上面一个卷积加池化,中间分别有3,4,6,3,这四层block,每个block由俩个卷积,即(3+4+6+3=16)×2=32,再加上最后一个fc层即34层的结构。
这里写图片描述

应用

CIFAR-10

发现复杂了可能效果还不好,所以就做了一个简单的模型,原始为32*32的图,padding了4位,然后再随机crop出32*32的图,接着便三个卷积层,分别为32*32×16,16*16×32,8*8×64,每层n个block,每个block俩个卷积层,再加上最后fc共6n+2层。说是110层效果最好,1000+层反而还不好了,可能是过拟合。

下面是部分实现代码,来自于ry/tensorflow-resnet

# This is what they use for CIFAR-10 and 100.
# See Section 4.2 in http://arxiv.org/abs/1512.03385
def inference_small(x,
                    is_training,
                    num_blocks=3, # 6n+2 total weight layers will be used.
                    use_bias=False, # defaults to using batch norm
                    num_classes=10):
    c = Config()
    c['is_training'] = tf.convert_to_tensor(is_training,
                                            dtype='bool',
                                            name='is_training')
    c['use_bias'] = use_bias
    c['fc_units_out'] = num_classes
    c['num_blocks'] = num_blocks
    c['num_classes'] = num_classes
    inference_small_config(x, c)

def inference_small_config(x, c):
    c['bottleneck'] = False
    c['ksize'] = 3
    c['stride'] = 1
    with tf.variable_scope('scale1'):
        c['conv_filters_out'] = 16
        c['block_filters_internal'] = 16
        c['stack_stride'] = 1
        x = conv(x, c)
        x = bn(x, c)
        x = activation(x)
        x = stack(x, c)

    with tf.variable_scope('scale2'):
        c['block_filters_internal'] = 32
        c['stack_stride'] = 2
        x = stack(x, c)

    with tf.variable_scope('scale3'):
        c['block_filters_internal'] = 64
        c['stack_stride'] = 2
        x = stack(x, c)

    # post-net
    x = tf.reduce_mean(x, reduction_indices=[1, 2], name="avg_pool")

    if c['num_classes'] != None:
        with tf.variable_scope('fc'):
            x = fc(x, c)

    return x

另一种部分实现代码,参考自wenxinxu/resnet-in-tensorflow

def inference(input_tensor_batch, n, reuse):
    '''
    The main function that defines the ResNet. total layers = 1 + 2n + 2n + 2n +1 = 6n + 2
    :param input_tensor_batch: 4D tensor
    :param n: num_residual_blocks
    :param reuse: To build train graph, reuse=False. To build validation graph and share weights
    with train graph, resue=True
    :return: last layer in the network. Not softmax-ed
    '''

    layers = []
    with tf.variable_scope('conv0', reuse=reuse):
        conv0 = conv_bn_relu_layer(input_tensor_batch, [3, 3, 3, 16], 1)
        activation_summary(conv0)
        layers.append(conv0)

    for i in range(n):
        with tf.variable_scope('conv1_%d' %i, reuse=reuse):
            if i == 0:
                conv1 = residual_block(layers[-1], 16, first_block=True)
            else:
                conv1 = residual_block(layers[-1], 16)
            activation_summary(conv1)
            layers.append(conv1)

    for i in range(n):
        with tf.variable_scope('conv2_%d' %i, reuse=reuse):
            conv2 = residual_block(layers[-1], 32)
            activation_summary(conv2)
            layers.append(conv2)

    for i in range(n):
        with tf.variable_scope('conv3_%d' %i, reuse=reuse):
            conv3 = residual_block(layers[-1], 64)
            layers.append(conv3)
        assert conv3.get_shape().as_list()[1:] == [8, 8, 64]

    with tf.variable_scope('fc', reuse=reuse):
        in_channel = layers[-1].get_shape().as_list()[-1]
        bn_layer = batch_normalization_layer(layers[-1], in_channel)
        relu_layer = tf.nn.relu(bn_layer)
        global_pool = tf.reduce_mean(relu_layer, [1, 2])

        assert global_pool.get_shape().as_list()[-1:] == [64]
        output = output_layer(global_pool, 10)
        layers.append(output)

    return layers[-1]

Imagenet

层差原文tabble1
了例如50层的话,中间四层分别(3+4+6+3)=16个block,每个block3个卷积,1×1,3×3,1×1,共16×3=48层,加上下俩层就五十层了。
下面是部分实现代码,来自于ry/tensorflow-resnet

def inference(x, is_training,
              num_classes=1000,
              num_blocks=[3, 4, 6, 3],  # defaults to 50-layer network
              use_bias=False, # defaults to using batch norm
              bottleneck=True):
    c = Config()
    c['bottleneck'] = bottleneck
    c['is_training'] = tf.convert_to_tensor(is_training,
                                            dtype='bool',
                                            name='is_training')
    c['ksize'] = 3
    c['stride'] = 1
    c['use_bias'] = use_bias
    c['fc_units_out'] = num_classes
    c['num_blocks'] = num_blocks
    c['stack_stride'] = 2

    with tf.variable_scope('scale1'):
        c['conv_filters_out'] = 64
        c['ksize'] = 7
        c['stride'] = 2
        x = conv(x, c)
        x = bn(x, c)
        x = activation(x)

    with tf.variable_scope('scale2'):
        x = _max_pool(x, ksize=3, stride=2)
        c['num_blocks'] = num_blocks[0]
        c['stack_stride'] = 1
        c['block_filters_internal'] = 64
        x = stack(x, c)

    with tf.variable_scope('scale3'):
        c['num_blocks'] = num_blocks[1]
        c['block_filters_internal'] = 128
        assert c['stack_stride'] == 2
        x = stack(x, c)

    with tf.variable_scope('scale4'):
        c['num_blocks'] = num_blocks[2]
        c['block_filters_internal'] = 256
        x = stack(x, c)

    with tf.variable_scope('scale5'):
        c['num_blocks'] = num_blocks[3]
        c['block_filters_internal'] = 512
        x = stack(x, c)

    # post-net
    x = tf.reduce_mean(x, reduction_indices=[1, 2], name="avg_pool")

    if num_classes != None:
        with tf.variable_scope('fc'):
            x = fc(x, c)

    return x
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Multi-scale-1D-ResNet是一种用于信号处理和时间序列分析的深度学习模型。它基于ResNet(残差网络)的架构,并通过引入多尺度特征来改进模型的性能。 在传统的ResNet中,每个块都具有相同的尺度,这可能会限制模型对不同频率的信号特征的捕捉。因此,Multi-scale-1D-ResNet通过添加具有不同滤波器长度的并行卷积层来引入多尺度,从而使模型能够更好地学习不同频率的特征。 具体来说,Multi-scale-1D-ResNet包括一系列块,每个块内部包含了一定数目的相同尺度的卷积层。但与传统ResNet不同的是,在每个块的最后,Multi-scale-1D-ResNet还引入了一组具有不同滤波器长度的卷积层。这些卷积层使得模型能够在多个尺度上建模,从而能够更好地捕捉信号中的关键特征。 在实际应用中,Multi-scale-1D-ResNet被广泛用于诊断和预测方面,例如医疗领域中的心电图(ECG)分析,智能交通领域中的交通流预测和自然语言处理领域中的文本分类等。 ### 回答2: multi-scale-1d-resnet是一种深度学习模型。它结合了多尺度信息和残差网络来处理1D信号(比如音频,生物医学信号等)。该模型包括了多个1D卷积层和池化层,以提取输入信号的不同尺度(比如音频信号的基频和谐波等)。同时,残差网络的加入可以有效地防止梯度消失问题,使得该模型能够训练更深的神经网络。 multi-scale-1d-resnet模型在许多应用领域都有广泛的应用,比如语音识别、心电图诊断等。因为1D信号具有时域关系,而且大多数情况下其与其他数据(如图像)没有直接的对应关系,所以需要一种特殊的模型来处理。multi-scale-1d-resnet模型的出现大大提高了这类问题的解决效率,具有很好的性能表现。 总之,multi-scale-1d-resnet是一种处理1D信号的深度学习模型,它集成了多尺度信息和残差网络,可以有效地提取1D信号的特征,以实现不同领域的应用。 ### 回答3: Multi-scale-1D-ResNet是一种深度学习模型,可以处理一维序列数据。该模型是在ResNet的基础上,加入了多尺度特征融合的机制。在传统的ResNet中,深度网络的信息流只有一个固定的尺度,而多尺度特征融合将不同尺度的特征进行融合,可以提高网络对不同尺度的信号的处理能力,提高模型的表达能力和泛化能力。 Multi-scale-1D-ResNet模型中,输入的一维时间序列数据首先通过多个卷积层提取特征,然后使用残差块将特征进行深层次的挖掘。在多尺度特征融合中,通过在不同的卷积层之间增加shortcut连接,将不同尺度的特征进行融合。同时,在全局池化层中,对不同尺度特征进行平均池化,得到融合后的特征表示。最后,通过全连接层将特征映射到输出维度,完成任务的预测。 Multi-scale-1D-ResNet适用于处理一维时间序列数据,如语音、信号、股票等数据。由于多尺度特征融合的机制,使得模型能够更好地处理不同尺度的信号分布,具有很强的泛化能力和适配性。同时,由于ResNet的残差块结构,可避免梯度消失等问题,能够训练更深层次的网络。因此,Multi-scale-1D-ResNet成为处理时间序列数据上的重要方法之一。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值