论文中神经网络混淆矩阵图片打印

论文中神经网络混淆矩阵图片打印

导入必要的库函数

    import seaborn as sns
    from sklearn.metrics import confusion_matrix
    from PIL import Image

做好数据集并对模型进行训练权重加载

计算生成混淆矩阵图片并保存

predict_imgs_list = []
labels_list = []
with torch.no_grad():
    for data in test_transforms_loader:
        img, label = data
        img = img.to(device)
        labels_list.append(label)
        predict_img = net(img).argmax(dim=1)
        predict_imgs_list.append(predict_img.cpu().numpy())

labels = list(itertools.chain.from_iterable(labels_list))
outputs = list(itertools.chain.from_iterable(predict_imgs_list))
confusion_matrix = confusion_matrix(labels, outputs).astype('int')

plt.figure(figsize=(10, 8))
sns.heatmap(confusion_matrix, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.title('Confusion Matrix')
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值