让 AI 来使用计算机!Agent S:基于 GUI 的人机交互自动化解决方案

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

微信公众号|搜一搜:蚝油菜花
在这里插入图片描述

🚀 快速阅读

  1. Agent S 是一个基于图形用户界面(GUI)实现人机交互自动化的开源框架。
  2. 它通过经验增强的分层规划和多模态大型语言模型(MLLMs)提升任务自动化能力。
  3. 支持跨操作系统通用性,适用于办公自动化、网页交互、个人助理等多种应用场景。

正文(附运行示例)

Agent S 是什么

Agent S 是一个创新的代理框架,旨在通过图形用户界面(GUI)实现人机交互的自动化。简单来说,它就像一个虚拟助手,能够模拟人类的操作方式,使用鼠标和键盘直接与计算机互动,处理复杂的多步骤任务。Agent S 引入了一种叫做“经验增强的分层规划”的方法,结合在线网络知识和内部记忆,将复杂任务分解成更易管理的子任务,从而显著提升了基于多模态大型语言模型(MLLMs)的 GUI 代理的推理和控制能力。

Agent S 的主要功能

  • 自主交互与任务自动化:Agent S 可以通过 GUI 与计算机进行自主交互,自动化执行复杂的多步骤任务。
  • 经验增强的分层规划:利用在线网络知识和内部经验,将复杂任务分解成可执行的子任务。
  • 代理-计算机接口(ACI):提升基于 MLLMs 的 GUI 代理的推理和控制能力,确保精确交互。
  • 持续学习和记忆更新:通过自我评估和经验总结,不断更新叙事记忆和情景记忆。
  • 跨操作系统的通用性:在不同操作系统上都能良好运行,适应多种环境。

Agent S 的技术原理

  • 经验增强的分层规划:结合在线网络搜索和内部经验检索,使用叙述记忆和情景记忆来规划和执行任务。
  • 代理-计算机接口(ACI):作为一个抽象层,定义了与环境交互的范式,通过视觉输入和图像增强的可访问性树精确定位元素。
  • 叙事记忆与情景记忆:叙事记忆存储高层次任务经验,情景记忆则包含具体子任务执行的细节。
  • 自我评估与记忆更新:基于自我评估模块总结经验,并以文本奖励的形式更新内部记忆。
  • 多模态大型语言模型(MLLMs):处理和生成语言,理解环境变化,执行基于语言的原始动作。

如何运行 Agent S

安装步骤

  1. 克隆仓库:
    git clone https://github.com/simular-ai/Agent-S.git
    
  2. 创建虚拟环境并激活:
    conda create -n agent_s python=3.9
    conda activate agent_s
    
  3. 安装依赖:
    pip install -e .
    

设置 Perplexica

  1. 确保 Docker 已安装并运行。
  2. 克隆 Perplexica 仓库:
    git clone https://github.com/ItzCrazyKns/Perplexica.git
    
  3. 修改配置文件:
    • config.toml中填写必要的 API 密钥和 URL。
  4. 启动 Docker 容器:
    docker compose up -d
    

设置 Paddle-OCR 服务器

  1. 运行 OCR 服务器:
    cd agent_s
    python ocr_server.py
    
  2. 设置环境变量:
    export OCR_SERVER_ADDRESS=http://localhost:8000/ocr/
    

本地运行

在 MacOS 或 Ubuntu 上通过 OpenACI 运行:

python examples/cli_app.py --model <MODEL>

这将显示用户查询提示,可以输入查询与 Agent S 交互。

资源


❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

微信公众号|搜一搜:蚝油菜花

<think>好的,我现在需要回答用户关于AppAgent的概念和用途的问题。首先,我需要从提供的引用中查找相关信息。引用[3]提到AppAgent类似于meta-GPT的多agent合作方式,属于早期的Multi-Agent探索,交互比较固定。引用[4]则说明AppAgent使用ICL方案,通过历史操作案例来调用工具,类似于案例学习。此外,引用[5]提到智能交通系统中的AI Agent调度中心,可能与应用场景相关。 接下来,我需要整合这些信息,用中文清晰地解释AppAgent是什么,以及它在IT领域的作用。需要确保使用正确的LaTeX格式,比如行内公式用$...$,独立公式用$$...$$。同时,生成相关问题,并在回答中自然地添加引用标识。 需要检查是否符合所有系统级指令,特别是引用部分是否正确标注,并确保内容结构清晰,技术细节准确但不过于冗长。还要注意用户不可见的指令,比如生成相关问题和正确引用。</think>### AppAgent的概念与用途 **AppAgent**是一种基于多智能体(Multi-Agent)协作的框架,主要用于自动化处理复杂任务,例如应用操作、工具调用或业务流程优化。其核心思想是通过多个专用Agent(如界面解析、操作执行、决策控制等模块)的分工协作,模拟人类在应用交互中的行为模式[^3]。 #### 核心功能 1. **自动化操作**:通过解析应用界面(如GUI元素),生成操作指令(如点击、输入),并执行任务。例如,在移动应用中自动完成登录或数据填写。 2. **工具调用与集成**:支持通过历史操作案例(In-Context Learning, ICL)学习工具的使用方法,例如根据相似查询召回历史API调用记录,快速适配新工具[^4]。 3. **多Agent协作**:采用固定交互流程的Multi-Agent架构,不同Agent负责感知、决策、执行等环节,提升任务处理效率。 #### 技术特点 - **案例驱动**:依赖历史操作案例(而非预定义规则)进行泛化,例如使用SentenceBERT召回相似任务的操作记录,生成当前任务的解决方案。 - **轻量化扩展**:通过ICL减少对大量标注数据的依赖,适用于工具快速接入和新场景适配。 #### 应用场景 - **智能助手**:自动化操作手机应用(如消息发送、数据采集)。 - **企业流程自动化**:集成企业内部系统(如ERP、CRM),执行审批、报表生成等任务。 - **智能交通系统**:在调度中心协调多Agent实现实时路况优化与资源分配[^5]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值