PaperReading-TranSparse《Knowledge Graph Completion with Adaptive Sparse Transfer Matrix》

TranSparse论文针对知识图谱中关系的异构性和平衡性问题,提出了一种适应性稀疏转移矩阵方法。通过引入稀疏矩阵表示关系的重要性,仅更新非零元素,改善了TransD模型。结构型稀疏矩阵优于非结构型,论文探讨了两种生成方式,并区分共享型和独立型映射。未找到相关代码实现,作者欢迎分享。
摘要由CSDN通过智能技术生成

本文记录了有关TranSparse《Knowledge Graph Completion with Adaptive Sparse Transfer Matrix》论文的相关情况,如果有做相关内容的同学可以邮件与我联系 zhaoliang19960421@outlook.com

背景

之前的基于翻译模型中,将所有的关系是按照同一个标准来进行翻译,没有考虑关系在链接实体上的特性,在论文中将这种由于关系在链接实体上的不同,定义成了两个问题,异构性和平衡性
1

  • 异构性:不同的关系链接的头尾对儿的个数不一样
    实际的情况中,一个关系链接的头尾对儿的数量决定了这个关系在图谱中的重要性,越重要的关系就需要更多的信息来表征。如果所有的关系的重要性认为是一样的时候,就会出现重要的关系表征能力不够(欠拟合),不重要的关系添加了太多不必要的表征内容(过拟合)。因此要对不同重要性的关系进行不同程度的表征

  • 平衡性:同一个关系链接的头实体和尾实体的个数也不一样
    同一个关系中头尾实体的个数不同,决定了这个关系更加关注于头实体或者尾实体。和上面的异构性含义一样,更加关系的内容,就需要用更多的语义信息来表征;如果将头实体和尾实体认为是一样的重要性,也会出现重要的内容表征能力不够(欠),不重要的内容含有更多的语义内容造成了噪音(过)

思路

基于对以上两个问题的思考,Tran

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值