本文记录了有关TranSparse《Knowledge Graph Completion with Adaptive Sparse Transfer Matrix》论文的相关情况,如果有做相关内容的同学可以邮件与我联系 zhaoliang19960421@outlook.com
背景
之前的基于翻译模型中,将所有的关系是按照同一个标准来进行翻译,没有考虑关系在链接实体上的特性,在论文中将这种由于关系在链接实体上的不同,定义成了两个问题,异构性和平衡性
-
异构性:不同的关系链接的头尾对儿的个数不一样
实际的情况中,一个关系链接的头尾对儿的数量决定了这个关系在图谱中的重要性,越重要的关系就需要更多的信息来表征。如果所有的关系的重要性认为是一样的时候,就会出现重要的关系表征能力不够(欠拟合),不重要的关系添加了太多不必要的表征内容(过拟合)。因此要对不同重要性的关系进行不同程度的表征 -
平衡性:同一个关系链接的头实体和尾实体的个数也不一样
同一个关系中头尾实体的个数不同,决定了这个关系更加关注于头实体或者尾实体。和上面的异构性含义一样,更加关系的内容,就需要用更多的语义信息来表征;如果将头实体和尾实体认为是一样的重要性,也会出现重要的内容表征能力不够(欠),不重要的内容含有更多的语义内容造成了噪音(过)
思路
基于对以上两个问题的思考,Tran