1 Idea
起初是看到cmu计算机视觉课件image filtering一节时,如何做出来下图图片的效果。
2 实现
- 图片偏移
- 图片合并
注意合并不是简单的相加,而是通过比较同一位置的两个像素值,我们取较小的一个作为当前点的新的像素值。
merge_img.at<uchar>(i,j) = min(out_img.at<uchar>(i,j),merge_img.at<uchar>(i,j));
完整代码如下
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
Mat OffsetImage(const Mat& image, int heightOffset, int widthOffset);
int main()
{
//按照灰度图读入
Mat src_img = imread("../cmu.png",0);
Mat out_img, merge_img;
if (src_img.empty())
{
cout << "read img failed!" << endl;
return -1;
}
//通过高斯滤波获取模糊图像
GaussianBlur( src_img, out_img, Size( 5, 5 ), 10, 10 );
//对原图做一个偏移
merge_img = OffsetImage(src_img, -5, -5);
//合并图像
for(int i = 0; i < src_img.rows; i++)
{
for(int j = 0; j < src_img.cols; j++)
{
merge_img.at<uchar>(i,j) = min(out_img.at<uchar>(i,j),merge_img.at<uchar>(i,j));
}
}
// 注意合并并不是下面这种操作。。。不过下面的操作出来的图也比较好看,见比较
// merge_img = merge_img+out_img;
imshow("src", src_img);
imshow("gaussian", out_img);
imshow("merge", merge_img);
waitKey(0);
return 0;
}
//单通道图像偏移操作函数
Mat OffsetImage(const Mat& image, int heightOffset, int widthOffset)
{
Mat dest = Mat::zeros(image.size(), image.type());
for(int i = 0; i < dest.rows; i++)
{
for(int j = 0; j < dest.cols; j++)
{
int di = i + heightOffset;
int dj = j + widthOffset;
if(0 <= di && di < dest.rows && 0 <= dj && dj < dest.cols)
dest.at<uchar>(di, dj) = image.at<uchar>(i, j);
}
}
return dest;
}
3 效果
-
使用比较像素值大小得到的效果图
-
使用图片叠加得到的效果图