第十九讲 拉普拉斯变换引入

本文介绍了拉普拉斯变换,从傅里叶变换的局限性引入,阐述了衰减因子的作用,使得非周期函数可以被处理。讲解了拉普拉斯变换的标准形式、收敛域及其与幂级数的关系。同时,讨论了线性性质、指数位移定律,并提供了计算拉普拉斯变换及逆变换的方法,包括部分分式展开和洛必达法则的应用。
摘要由CSDN通过智能技术生成

一,从傅里叶变换到拉普拉斯变换:

  • 傅里叶变换:F(\omega )=\mathcal {F}[f(t)]=\int_{-\infty }^{\infty }f(t)e^{-i\omega t}dt
  • 拉普拉斯变换:F(s)=\mathcal {L}[f(t)]=\int_{-\infty }^{\infty }f(t){\color{Red} e^{-\sigma t}}e^{-i\omega t}dt,其中e^{-\sigma t}为衰减因子,\sigma > 0
  • 为什么要在傅里叶变换中乘上衰减因子e^{-\sigma t}
  • 因为当非周期函数f(t)随时间单调递增或单调递减,趋于无穷大(直男)时,无法使用傅里叶变换,如图: 
  • 因此给f(t)乘上衰减因子e^{-\sigma t},使其在远处逐渐衰减下来(被掰弯),就可以用傅里叶变换了,如图(红色):
  • F(s)=\int_{-\infty }^{\infty }f(t){\color{Red} e^{-\sigma t}}e^{-i\omega t}dt=\int_{-\infty }^{\infty }f(t)e^{-t(\sigma +i\omega )}dt
  • \sigma +i\omega =s,s表示拉普拉斯算子
  • 拉普拉斯变换标准形式:F(s)=\int_{-\infty }^{\infty }f(t)e^{-st}dt
  • 收敛域,如图(红色阴影部分):
  • \sigma > \sigma _{0}时,f(t)的增长速度比不过e^{-\sigma t}的衰减速度,表示f(t)收敛(能被掰弯),就可以用拉普拉斯变换
  • \sigma < \sigma _{0}时,f(t)的增长速度超过e^{-\sigma t}的衰减速度,表示f(t)不收敛(不能被掰弯),无法用拉普拉斯变换

二,从幂级数到拉普拉斯变换:

  • 幂级数:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值