一步一步理解大模型:位置编码

位置编码在GPT和Transformer模型中至关重要,它为输入序列的每个位置添加位置信息,帮助模型理解词序。通过正弦和余弦函数计算得到,这种编码方式具有连续性、可微性、周期性和唯一性,能捕获序列结构和相对位置信息,提升自然语言处理任务的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GPT(Generative Pre-trained Transformer)模型是一个基于Transformer架构的自然语言处理模型。位置编码(Positional Encoding)是Transformer和GPT模型的一个关键部分,它为输入序列的每个位置添加额外的信息。位置编码的目的是向模型提供每个词在句子中的相对位置信息,因为Transformer的自注意力机制(Self-Attention Mechanism)并不关心词的顺序。

在GPT模型中,位置编码通过将正弦和余弦函数应用于输入序列的每个位置来实现。这些正弦和余弦函数具有不同的频率,从而产生一个独特的编码向量,用于捕捉序列中每个位置的信息。具体来说,位置编码的计算公式如下:

PE(pos, 2i) = sin(pos / 10000^(2i / d_model))
PE(pos, 2i + 1) = cos(pos / 10000^(2i / d_model))

其中:

  • PE(pos, i)表示位置pos的编码向量中的第i个元素。
  • pos表示序列中的位置,范围从0到max_seq_len - 1
  • i表示编码向量中的索引,范围从0到d_model - 1d_model是模型的嵌入维度。
  • 对于偶数i,位置编码使用正弦函数;对于奇数i,位置编码使用余弦函数。

以下是一个位置编码函数的实现:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值