1.PCA的计算步骤
(1)求协方差矩阵
(2)求协方差矩阵的特征值和特征向量
(3)选取前K个特征向量使得贡献率达到85%以上
(4)获得降维后的数据
2.数据在特征向量方向上可以获得最大的方差,可以了解成在该方向上数据的区分度最高,信息量最大
3.协方差的意思
如果结果为正值,则说明数据是正相关的(从协方差可以引出“相关系数”的定义)
数值越大表示相关性越高,方差是协方差的特例
协方差矩阵表示的是一组基,在这个基下,数据在特征向量方向上取得最大方差,特征值是数据在特征向量方向上的方差。
PS:每个矩阵都可以表示一个线性变换。
参考文献