anygrap 使用笔记

graspness(https://github.com/graspnet/graspness_unofficial)官方没有提供权重文件。anygrasp-sdk (https://github.com/graspnet/anygrasp_sdk)提供了权重文件,但是需要申请license。

想体验下anygrasp的精度如何,于是提交了license申请,申请license的响应速度还是很快的,1-2天就收到了机器对应的license文件。

把license放到指定目录,进行license check,然后就可以使用了,发送license文件的他同时,也发送了两个权重文件(rs和kn)。

进行license check的结果如下图:

### 自动捡网球机器人的视觉系统实现方案和技术细节 #### 视觉识别模型的选择 对于自动捡网球机器人而言,其核心挑战在于如何高效准确地检测并定位场地中的网球。考虑到OK-Robot的成功经验,在实际环境中操作物体时可借鉴类似的开放知识模型来构建视觉系统[^1]。 #### 数据集准备与训练 为了使机器人能够适应不同光照条件下的网球场环境以及各种类型的球类物品,需收集大量包含这些变化因素的数据用于训练深度学习模型。这包括但不限于白天夜晚场景切换、草地硬地球场表面差异等复杂情况。 #### 特征提取方法 采用先进的特征描述子如CLIP或者Lang-SAM可以帮助提高目标检测精度;而针对具体抓取动作,则可能需要用到AnyGrasp这样的专门化工具来进行姿态估计和接触点预测。 #### 占据网格的应用 在规划路径过程中,利用占据网络(occupancy network)的概念建立三维空间内的障碍物分布图是非常有效的手段之一。通过将摄像头获取到的画面转换成一系列离散化的体积单元(即体素),可以更直观地理解周围世界,并据此做出合理决策以避开潜在危险区域或找到最佳拾取路线[^2]。 ```python import numpy as np def create_occupancy_grid(image_data, voxel_size=0.1): """ 将图像数据转化为占据网格. 参数: image_data (np.ndarray): 输入的二维灰度图像数组 voxel_size (float): 每个体素的实际大小,默认为0.1米 返回: occupancy_grid (dict): 键为(x,y,z),值为该位置是否被占用的概率 """ height, width = image_data.shape[:2] max_dim = max(height, width) scale_factor = voxel_size / max_dim occupancy_grid = {} for y in range(height): for x in range(width): z_value = float(image_data[y,x]) * scale_factor # 假设亮度对应高度 key = tuple(np.round([x*scale_factor, y*scale_factor, z_value], decimals=2)) occupancy_grid[key] = min(float(image_data[y,x])/255., 1.) # 归一化后的概率 return occupancy_grid ``` #### 多传感器融合策略 除了依赖单一视觉输入外,还可以考虑加入其他形式的感觉反馈机制比如激光雷达(LiDAR)测距仪或是超声波探测器等等,从而进一步增强系统的鲁棒性和可靠性。多模态信息处理框架允许我们将来自不同类型源的信息结合起来分析判断,最终达到更好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值