四维超球想象(黎曼的度量张量和曲率张量)和拓扑视角下的光学涡环。

72 篇文章 2 订阅

作者:钟进展詹其文

(1 上海理工大学光电信息与计算机工程学院)

(2 张江实验室)

本文选自《物理》2023年第10期

摘要涡旋环是一种广泛存在于流体和气体中的可传播环形结构,其与拓扑学中的纽结理论密切相关。近年来,随着光场调控技术的发展,时空光场在时间和空间维度的紧密联系为研究光学拓扑结构提供了良好的平台。文章将回顾近期关于光学涡环的系列研究,介绍光学涡环产生过程中的物理机制;并分别从拓扑和结构光两个视角出发,详细讨论由光学涡环延伸出的光学相位拓扑结构,包括标量光学霍普夫子及光学相位莫比乌斯环。

关键词 时空光场,涡旋环,纽结理论,霍普夫子,莫比乌斯环

引 言

涡旋(vortex)是广泛存在于各种物理系统中的一种特殊结构,在日常生活中随处可见,例如水流中心或者台风中心的漩涡。在光学系统中也存在涡旋,在过去三十年中,对光学涡旋的研究已经取得了长足的发展,并且激发了光操控、光通信、光学加工等领域中的大量应用。涡旋中心是各类物理量的奇点,对于平面涡旋结构,涡旋中心是一个点,也可以称之为一维奇点。相应的,当涡旋中心在三维空间中连接形成直线等空间轨迹,其对应二维奇点。特别地,当涡旋中心形成闭合圆形轨迹,该涡旋结构被称为环形涡旋或涡环(toroidal vortices,vortex rings)。

在液体和气体中,涡旋环的形成引起人们极大的兴趣。例如在水族馆中,海豚可以创造出气泡环,气泡环是在水中传播的充满空气的涡旋环。人们同样惊讶于烟雾表演者利用烟雾创造出涡旋环,控制涡旋环的形状并使其在空气中传播。而在火山上空同样可以发现烟雾产生的涡环,如图1(a)所示。关于涡旋环的科学研究可以追溯至1867年,苏格兰物理学家泰特(Peter Guthrie Tait)构建了一个盒子来研究烟圈。泰特早期从德国科学家亥姆霍兹(Hermann von Helmholtz)的一篇论文中了解到,理想流体中的涡环是稳定且持续存在的。尽管空气并非理想的流体,但泰特希望找到一个近似的模型。他在木箱的一端刻了一个圆孔,另一端则用拉紧的毛巾代替。在木箱里撒上浓氨水,并放置了一个盛有硫酸的盘子,将硫酸浇在普通盐上。两种气体结合形成固体的微粒,由于流体摩擦而悬浮在空中,就像空气中的烟雾一样。如图1(b)所示,通过击打毛巾会导致烟圈从圆孔里冒出来。当烟雾到达开口时,它会向外移动,之后在盒子外面的空气推动下以圆周运动继续向前移动。如果开口处是圆以外的形状,烟雾穿过孔后会逐渐呈现为圆形。汤姆孙(William Thomson),即后来的开尔文勋爵(Lord Kelvin),在看了泰特的实验后认为化学原子是以太中稳定且成结的涡旋,其具有涡旋运动。汤姆孙和泰特的努力产生了如今拓扑学中重要分支的纽结理论(knot theory)。从拓扑上来说,涡环的中心轨迹是未成结的圆环,如图1(c)所示。最简单的非平凡结,也称为三叶结(trefoil knot),如图1(d)所示。多个圆环或纽结的组合称为链,图1(e)为霍普夫链(Hopf link),由两个独立的圆环嵌套而成。

图1 (a)西西里岛上的埃特纳活火山上空升起的烟圈。该涡环是由火山狭窄口喷出的少量烟雾形成的,它的直径可以达到600多英尺,并保持稳定超过10分钟;(b)1867年,苏格兰物理学家泰特用更小的烟圈进行了实验,以更多地了解涡环运动;(c)独立的圆环;(d)三叶结;(e)霍普夫链

涡旋环的形成和运动是连续介质中动力学的重要组成部分,已经被研究了一个多世纪。那么能否在光波中产生并观察稳定的光学涡环呢?最近的研究填补了这一空白,本文将回顾光学涡环的诞生及由其延伸出的光学拓扑结构。

光学涡环的诞生

光学涡环的诞生得益于近年来时空结构光场及丰富调控手段的发展。其中,具有横向轨道角动量和时空能量环流特征的时空光涡旋很快受到了广泛关注。对时空涡旋的产生、调控及表征技术引发了该领域的一系列研究。实际上,时空涡旋为光学涡环的诞生提供了“原材料”,正如海洋中海豚创造气泡环那样,需要找到合适的调控方式来产生光学涡环。保角映射(conformal mapping)则是实现光学涡环的重要调控手段。保角映射是复变函数中的概念,它可以实现几何坐标系之间的转换。这种变换方式已经在光学研究中发挥了重要的作用。例如,基于保角映射设计的超构材料可以使光线发生弯曲,绕过被隐藏物体从而实现光学隐身。另一重要应用是光学轨道角动量分选,其物理本质是利用保角映射将不同拓扑荷的光学涡旋变换为不同横向相位梯度的光束,进而利用透镜聚焦,使焦点位于不同横向位置。如图2(a)所示,在轨道角动量分选中,保角映射将极坐标系中的涡旋相位映射至直角坐标系中的梯度相位。反之,可以将直角坐标映射至极坐标,而产生光学涡环正是利用了这一点。在二维平面中,保角映射将直线映射为圆,而在三维空间中,其将圆柱面映射为圆环面。图2(b)给出了形成光学涡环的示意图,细长的涡旋管经过空间传播演化形成涡旋环。

图2 (a)直角坐标与极坐标之间的相互转化;(b)涡旋管在自由空间传播演化为涡旋环的数值模拟结果;(c)光学映射过程中需要的变换相位及校正相位

为了在光学上实现这一映射过程,需要利用光学调制元件将入射光束的横向位置坐标转化为输出光束的角向位置坐标。入射平面的平行线将转化为出射平面的同心圆,即将光束中的涡旋线转化为涡旋环。整个光学变换系统包括两个光学调制元件,第一个用于将涡旋管映射至涡旋环,第二个用于校正相位畸变。通过推导平行线映射为同心圆所需的射线方向偏差,从而得到光学调制所需要的相位分布。然而,这一映射过程中产生的光程变化会引入额外的相位畸变,因此需要第二个光学调制元件校正畸变相位。图2(c)分别为光学变换过程中所需的两个调制相位分布。

用于产生与表征光学涡环的实验装置如图3(a)所示,采用色散管理锁模光纤激光器作为光源,自激光器输出的啁啾脉冲经过分光棱镜后被分为两束光,其中反射光束用作干涉测量的参考光束,透射光束用于产生光学涡环。信号脉冲经过衍射光栅和柱透镜后到达光场的空间频率—频率面,通过在该平面放置空间光调制器并施加二维涡旋相位,在时空傅里叶变换后,信号脉冲将被调制为携带时空涡旋的波包。之后时空涡旋脉冲经过一对柱透镜,从而沿涡旋线方向拉伸时空涡旋波包,得到图2(b)中所示的细长形涡旋管。之后再经过由两个液晶空间光调制器组成的光学变换系统,将时空涡旋脉冲转化为环形涡旋脉冲,该过程如同弯折并对接一个管状结构,使其变为环状结构。

图3 (a)用于产生与表征光学时空涡环的实验装置示意图;(b)实验产生的光学涡环的强度等值面;(c)不同切面位置处的涡旋相位分布,数字①—③对应图(b)中的标记位置

为了表征三维时空拓扑结构,可以采用干涉测量的方式解调出涡环的复振幅分布。如图3(a)所示,实验中参考脉冲被光栅对压缩为飞秒脉冲,约为90 fs,其时间尺度远小于待测时空涡环脉冲(约为3 ps),它们最后发生干涉并被电荷耦合器件(CCD)所记录。通过解调所记录的干涉条纹,即可得到单一时间切片上的光场信息。在此基础上利用电控位移台控制光栅对之后的反射镜,通过精确控制空间位移实现对光场时间方向的扫描测量。利用该测量方法重构出的光学涡环三维强度等值面如图3(b)所示。涡旋环的一个特点是其在环上的每一点都可以看作是局部涡旋。为了更清晰地观察这一特点,沿着涡旋环的径向取三个切片,分别由数字①—③标记,相应的涡旋相位分布如图3(c)所示,从中也可以分析出涡旋的拓扑荷均为1。

标量光学霍普夫子

霍普夫子(hopfion)是由德国数学家霍普夫(Heinz Hopf)命名的,他在1931年发现了霍普夫纤维化(Hopf fibration)。霍普夫纤维化是数学和物理学中的重要对象,它也是早期数学中纤维丛(fiber bundle)的一个有影响力的例子。纤维丛是较为抽象的概念,在数学上它表示在底流形上由纤维构成的空间。较为形象的例子是圆柱形的梳子,梳子如同一个纤维丛,其中圆柱面是底流形,而上面的梳齿(线段)则是纤维。霍普夫纤维化具有广泛的物理应用,包括磁单极子、刚体力学和量子信息理论等。

用数学语言描述,霍普夫发现了从四维空间的超球面到三维空间普通球面的多对一连续映射。在几何上,单位球面表示+1维实空间中与原点距离为1的点的集合。如图4(a),(b)所示,是二维平面中的单位圆,而是三维空间中的球面,而更高维的球面则很难想象。若要直观地观察高维球面的性质,可以利用空间立体角投影(stereographic projection)来降低维度,从而在可观察的空间中了解高维球面的性质。对于单位圆,取圆上的一点并与其他点连线,即可将其投影至一条直线上,如图4(a)所示。类似地,三维球面可以投影到二维平面,球面上的纬线被投影至二维平面上的圆,如图4(b)所示。在投影过程中除了投影点外,其他点在投影前后是一一对应的,投影过程也是连续的。

图4 (a)用空间立体角投影将单位圆投影至一条无限延伸的直线;(b)三维空间中的单位球面可以投影至二维平面,球面上的纬线(紫色曲线)投影至平面上的圆;(c)四维空间中的超球面将投影至整个三维空间,超球面上的纬线投影至三维空间中的圆环面,超球面的南极点对应三维空间中的单位圆(黑色曲线)

对于四维超球面,它将被投影至整个三维空间,球面上的纬线将投影至三维空间中的圆环面,如图4(c)所示。事实上,三维空间中嵌套的圆环面与环状奇点密切相关,当超球面上的纬线逐渐向南极点靠近时,投影空间中的圆环面将逐渐缩小,当纬线移动至南极点时,圆环面也将变为一个单位圆,如图4(c)中黑色曲线所示。与之相反,当超球面上的纬线逐渐向北极点靠近时,投影空间中的圆环面将逐渐放大,当纬线移动至北极点时,圆环面也展开为一条垂直于单位圆且无限延伸的直线。三维空间中无限延伸的直线和单位圆可以看作是圆环面中的奇点结构,它们也可以看作是一个重要的框架,整个三维空间依附于该框架。试想,当这个框架结构变为光学奇点结构,又会形成怎样的三维结构光场?

最近的研究结果表明,基于光学涡环的时空光场可以形成标量光学霍普夫子。光学涡环与其中心穿过的空间涡旋线是标量光学霍普夫子的框架,而光场的相位结构则构成了标量光学霍普夫子结构。如图5(a)所示,高维参量空间中的每个点对应实空间中的一个闭合环,映射关系用相同的颜色表示。不同的纬线对应不同的圆环面,而圆环面则由一系列闭合环编织而成。注意到在参量空间中,超球面上的一点经过纬线一周后回到原点,其角坐标变化2π,而在光场中2π正好对应相位周期。在标量光学霍普夫子中,其同样包含无限层的圆环面,每层圆环面对应强度等值面。在特定强度等值面上,相位等值线形成一个闭合环,所有相位值的相位等值线构成了相位圆环面。特别地,任意两个不同相位值的等值线会形成霍普夫链,它们相互独立,如图5(b)所示。这种特殊的拓扑结构在数学上可以看作一个谜题,即能否用互不相交的圆和一条直线来填满整个三维空间,每对圆都是成链的,并且直线是穿过圆的?圆之间相互成链的拓扑特性使该问题变得有挑战,如不加这一限制则很容易得到答案。例如可以取一系列同心圆,使它们的中心在同一条直线上。实际上,霍普夫纤维化即是这个谜题的答案,而标量光学霍普夫子又是麦克斯韦方程组的近似解。

图5 (a)霍普夫纤维化及标量光学霍普夫子的示意图,空间涡旋和时空涡环可以看作标量光学霍普夫子的框架;(b)霍普夫不变量分别为1和4的标量光学霍普夫子,两个相位等值线形成霍普夫链,插图为50条相位等值线形成的相位结构;(c)标量光学霍普夫子的实验结果,用颜色表示不同的相位值

标量光学霍普夫子有两个可控参量,分别为空间涡旋的拓扑荷与时空涡环的拓扑荷,它们均为正整数。相应的霍普夫不变量则定义为这两个拓扑荷的乘积,因此这样的结构光场具有可调控的拓扑不变量。图5(b)分别给出了霍普夫不变量分别为1和4所对应的光场结构,高阶光学霍普夫子可以形成更为复杂的光学相位结构。在实验上产生标量光学霍普夫子的关键是控制其框架结构,即产生光学涡环及空间涡旋线。实验上仍采用图3(a)所示的实验装置,利用变换相位将涡旋管转化为涡旋环,之后同时施加校正相位及空间涡旋相位,以产生空间涡旋线。可以看出,标量光学霍普夫子的拓扑参量是由两个空间光调制器独立控制的,因此,理论上可以产生任意的环形相位拓扑结构。图5(c)为利用干涉测量法得到的标量光学霍普夫子,其霍普夫不变量为1。

光学相位莫比乌斯环

另一重要的拓扑结构是莫比乌斯环(Möbius strip),它是由德国数学家莫比乌斯(August Ferdinand Möbius)命名的。莫比乌斯环的重要特点是只有一个表面和一个边界,在数学上也称其为不可定向表面。我们可以很容易地通过扭转并对接一条纸带来演示这样的结构,如图6(a)所示。而在科学研究中,这种拓扑结构可以被构建于液晶缺陷,微腔结构中以呈现不同的物理性质。而在结构光场中,发现并产生光学莫比乌斯环并非易事。在2015年的一篇工作中,研究人员报道了利用光的偏振特性来产生偏振莫比乌斯环。由于光束的偏振具有可控的长短轴,紧聚焦光场又会使光束产生纵向偏振分量,因此巧妙地通过紧聚焦庞加莱光束得到了偏振莫比乌斯环。我们最新的研究表明,除了光的偏振可以形成莫比乌斯环,光的相位也可以形成相位莫比乌斯环,而相位莫比乌斯环的构建同样离不开光学涡环。

图6 (a)莫比乌斯环的示意图;(b)由同一经度和不同纬度的点组成的纤维集合,全局上具有扭转特性

相位莫比乌斯环仍来源于超球面的霍普夫纤维化。从标量霍普夫子的例子中可以发现,单一相位纤维仅表示局部空间的性质,而一簇相位纤维则形成完全不同的拓扑结构。不同纤维的集合在整体上可能会表现出完全不同的性质。例如在圆柱形的梳子中,从梳齿可以按圆分为一簇,也可以按线分为一簇。如图6(b)所示,在高维参量空间中选取经线上的点(不同角),它们对应的纤维在实空间形成纽带结构。在标量霍普夫子中,重点关注了强度等值面上的不同相位等值线,而相位纽带则可以看成是由不同强度值的相位等值线形成的。

图7 (a,b)光学涡环的强度等值面及其内部的相位条带;(c,d)嵌套的相位纽带分布;(e,f)单一相位值形成的相位纽带(第一行中光学涡环的拓扑荷为1,第二行中光学涡环的拓扑荷为2)

上面提到可以通过扭转并对接纸带来得到莫比乌斯环,而在时空光场中,光学调控过程也正好对应了物理对接和扭转。时空涡旋管经过光学变换对接为时空涡旋环,而空间涡旋相位则扭转了相位条带。图7(a)给出了拓扑荷为1时,光学涡环的强度等值面及面内的6个相位等值面,可以看到相位等值面形成了条带结构。黑色圆环表示涡环轨迹,此时奇点轨迹是相位条带的边界。图7(b)给出了拓扑荷为2时,光学涡环内部的相位条带结构,此时奇点轨迹不再是相位条带的边界而是中轴线,这对形成相位莫比乌斯环十分重要。进一步引入空间涡旋相位,可使相位条带发生扭转,如图7(c)所示。更为清楚地,图7(e)给出了单一相位值形成的相位纽带,其边界分别为涡环的奇点轨迹及相位等值线。实际上,该结构对应于扭转两次形成的环带,不具有单向性。相位纽带的扭转数(twists number)为空间涡旋拓扑荷与时空涡环拓扑荷的商,即/。在图7(e)所示的结构中,扭转数为1,即扭转360°。为了得到扭转数为半整数的相位莫比乌斯环,需使环形涡旋的拓扑荷为2,而空间涡旋的拓扑荷为奇数。图7(d)给出了扭转数为1/2的相位分布,单一相位值形成的相位莫比乌斯环如图7(f)所示,其边界为相位等值线形成的相位纽结。当空间涡旋的拓扑荷阶数增加时,可以形成更为复杂的环面纽结,例如三叶结。

总结与展望

时空涡旋为结构光场带来了横向轨道角动量,而时空涡环则为时空光场带来了极为丰富的拓扑结构。多种拓扑结构诸如纽结、霍普夫子及莫比乌斯环都可以在同一时空光场中找到,全新光学拓扑结构的发现既依赖于现代光场调控技术的发展,也依赖于对拓扑理论的良好应用。目前仍有大量的时空拓扑结构值得去探索与发现,高阶、高维的时空拓扑结构可能会带来新的光物理与拓扑特性。与此同时,对拓扑结构光场的快速精确表征也需要发掘新的时空测量技术。我们相信丰富的拓扑光态可以为奇异光学和类粒子光态的研究提供新的见解与视角,并能在高维信息载体及人工材料和纳米结构中的时空模式激发中发挥积极作用。

参考文献

[1] Shen Y,Wang X,Xie Z et al. Light:Science & Applications,2019,8(1):90

[2] Silver D S. American Scientist,2006,94(2):158

[3] Kauffman L H. Knots and Physics,3 ed. Singapore:World Scientific Publishing,2001

[4] Wan C,Cao Q,Chen J et al. Nature Photonics,2022,16(7):519

[5] Chong A,Wan C,Chen J et al. Nature Photonics,2020,14(6):350

[6] 万辰皓,Andy C,詹其文. 物理,2020,49(4):254

[7] Wan C,Chong A,Zhan Q. eLight,2023,3:11

[8] Hossack W J,Darling A M,Dahdouh A. Journal of Modern

Optics,1987,34(9):1235

[9] Leonhardt U. Science,2006,312(5781):1777

[10] Xu L,Chen H. Nature Photonics,2015,9(1):15

[11] Berkhout G C G,Lavery M P J,Courtial J et al. Phys. Rev. Lett.,2010,105(15):153601

[12] Wen Y,Chremmos I,Chen Y et al. Phys. Rev. Lett.,2018,120(19):193904

[13] Hopf H. Mathematische Annalen,1931,104(1):637

[14] Urbantke H K. Journal of Geometry and Physics,2003,46(2):125

[15] Wan C,Shen Y,Chong A et al. eLight,2022,2:22

[16] Zhong J,Wan C,Zhan Q. ACS Photonics,2023,10(9):3384

[17] Pickover C A. The Möbius strip:Dr. August Möbius's marvelous band in mathematics games,literature,art,technology,and cosmology. Basic Books,2007

[18] Zhao H,Tai J S B,Wu J S et al. Nature Physics,2023,19(3):451

[19] Wang J,Valligatla S,Yin Y et al. Nature Photonics,2023,17:120

[20] Bauer T,Banzer P,Karimi E et al. Science,2015,347(6225):964

转载内容仅代表作者观点

不代表中科院物理所立场

如需转载请联系原公众号

来源:中国物理学会期刊网

百度安全验证

 

 

 

 

 https://wenku.baidu.com/view/8985c123dd80d4d8d15abe23482fb4daa58d1da7.html?_wkts_=1711588780942&bdQuery=%E5%9B%9B%E7%BB%B4%E8%B6%85%E7%90%83%E9%9D%A2&needWelcomeRecommand=1

1854年,黎曼提交了他的教授资格论文,题为《关于多维空间的假设》。这篇论文被认为是现代几何学的开端,奠定了黎曼空间的概念。它将非欧几何和欧式几何融合,透过建立几何模型向公众证明了四维空间的实际存在。

在这篇论文中,黎曼提出了一项大胆的假设,认为空间不一定是欧几里得空间,也就是说,它并不一定由三个相互垂直的坐标轴构成,也不一定仅由三个维度构成。实际上,空间可以拥有任意多个维度和方向,形状也可以多种多样。

黎曼运用数学语言描述了这种多维空间,他借助一个叫做度量张量的对象来定义空间中的距离和角度,运用曲率张量来界定空间的弯曲程度,而黎曼张量则用于刻画空间的几何特性。这些概念和理论开创性地推动了数学和几何学的发展。


 

黎曼利用这些数学工具打造了一个四维空间的模型。他采用了一种被称为超球面的几何物体来描绘四维空间的形状。

为了表现四维空间的视角,他使用了一种叫做立体投影的方法。而黎曼球面则被用来描述四维空间中的运动。

这篇论文在数学界掀起了巨大的轰动,开启了一个全新的数学领域,也为物理学和哲学提供了全新的视角。黎曼的四维空间思想后来被爱因斯坦用来构建广义相对论,这是关于引力和时空的理论。

广义相对论解释了宇宙的起源和演变,预测了一系列奇妙的现象,包括黑洞、引力波、以及时空的弯曲等。

此外,黎曼的四维空间概念也启发了一些哲学家和艺术家,促使他们探索人类存在和意义的新思路。

这种理念激发了新的思维和创作,例如平克顿的《平兰德》、赫胥黎的《时空之门》以及艾舍尔的《印度之手》等作品。


 

黎曼的四维空间概念还成为一些科幻作家和电影制作人的灵感源泉,用来打造引人入胜的故事和场景,例如刘慈欣的《三体》、诺兰的《星际穿越》以及沃卓斯基姐妹的《黑客帝国》等。

这些作品通过四维空间的概念,勾勒出令人惊叹的未来世界和探索人类想象的边界。

 德国数学家证明4维空间真实存在,人在进入4维空间后会发生什么?|宇宙|张量|黎曼|几何学|广义相对论_网易订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值