广义相对论-学习记录5-第三章-张量分析与黎曼几何2

第三章:张量分析与黎曼几何

3、测地线方程

测地线方程的导出

  在普通空间中,直线的定义为:线上任意相邻两点的切矢量都相互平行的曲线。测地线则是将该定义推广到 n n n维仿射空间

  在 n n n维空间中,曲线由 n n n个参量式描述: x μ = x μ ( λ ) ,   μ = 1 , 2 , 3 , … , n x^\mu=x^\mu(\lambda),\ \mu=1,2,3,\dots,n xμ=xμ(λ), μ=1,2,3,,n,其中 λ \lambda λ为标量型参量。曲线上任意一点的切矢量定义为:
A μ ≡ d x μ d λ A^\mu\equiv \frac{dx^\mu}{d\lambda} Aμdλdxμ
  对于曲线上相邻两点 P ( x μ ) P(x^\mu) P(xμ) Q ( x μ + d x μ ) Q(x^\mu+dx^\mu) Q(xμ+dxμ),分别对应切矢量 A μ ( P ) A^\mu(P) Aμ(P) A μ ( Q ) A^\mu(Q) Aμ(Q),但这两个切矢量却无法直接比较的情况:先将 P P P点的切矢量 A μ ( P ) A^\mu(P) Aμ(P)平移到 Q Q Q点,得到 A μ ( P → Q ) A^\mu(P\rightarrow Q) Aμ(PQ),然后再定义测地线:
A μ ( P → Q ) / / A μ ( Q ) ↔ A μ ( Q ) = ( 1 + f ( λ ) d λ ) A μ ( P → Q ) A^\mu(P\rightarrow Q)//A^\mu(Q)\leftrightarrow A^\mu(Q)=(1+f(\lambda)d\lambda)A^\mu(P\rightarrow Q) Aμ(PQ)//Aμ(Q)Aμ(Q)=(1+f(λ)dλ)Aμ(PQ)
  这里已对比例因子 d λ d\lambda dλ进行了展开,并保留到了一阶小量

  测地线方程中, A μ ( Q ) A^\mu(Q) Aμ(Q)的泰勒展开:
A μ ( Q ) = A μ ( P ) + d A μ ( P ) = A μ ( P ) + d A μ ( P ) d λ d λ = d x μ d λ + d 2 x μ d λ 2 d λ A^\mu(Q)=A^\mu(P)+dA^\mu(P)\\ =A^\mu(P)+\frac{dA^\mu(P)}{d\lambda}d\lambda\\ =\frac{dx^\mu}{d\lambda}+\frac{d^2 x^\mu}{d\lambda^2}d\lambda Aμ(Q)=Aμ(P)+dAμ(P)=Aμ(P)+dλdAμ(P)dλ=dλdxμ+dλ2d2xμdλ
   ( 1 + f ( λ ) d λ ) A μ ( P → Q ) (1+f(\lambda)d\lambda)A^\mu(P\rightarrow Q) (1+f(λ)dλ)Aμ(PQ)的变化:
( 1 + f ( λ ) d λ ) A μ ( P → Q ) = ( 1 + f ( λ ) d λ ) [ A μ ( P ) − Γ α β μ ( P ) A α ( P ) d x β ( P ) ] = ( 1 + f ( λ ) d λ ) [ d x μ d λ − Γ α β μ d x α d λ d x β d λ d λ ] (1+f(\lambda)d\lambda)A^\mu(P\rightarrow Q)\\ =(1+f(\lambda)d\lambda)[A^\mu(P)-\Gamma^\mu_{\alpha\beta}(P)A^\alpha(P)dx^\beta(P)]\\ =(1+f(\lambda)d\lambda)\left[\frac{dx^\mu}{d\lambda}-\Gamma^\mu_{\alpha\beta}\frac{dx^\alpha}{d\lambda}\frac{dx^\beta}{d\lambda}d\lambda\right] (1+f(λ)dλ)Aμ(PQ)=(1+f(λ)dλ)[Aμ(P)Γαβμ(P)Aα(P)dxβ(P)]=(1+f(λ)dλ)[dλdxμΓαβμdλdxαdλdxβdλ]
  由上述两式相等得到:
d 2 x μ d λ 2 + Γ α β μ d x α d λ d x β d λ = f ( λ ) d x μ d λ \frac{d^2 x^\mu}{d\lambda^2}+\Gamma^\mu_{\alpha\beta}\frac{dx^\alpha}{d\lambda}\frac{dx^\beta}{d\lambda}=f(\lambda)\frac{dx^\mu}{d\lambda} dλ2d2xμ+Γαβμdλdxαdλdxβ=f(λ)dλdxμ
  此即测地线方程

仿射参量

  选择一组特殊的标量型参量 σ \sigma σ,即 λ = λ ( σ ) \lambda=\lambda(\sigma) λ=λ(σ),使其满足方程:
d 2 σ d λ 2 = f ( λ ) d σ d λ (1) \frac{d^2\sigma}{d\lambda^2}=f(\lambda)\frac{d\sigma}{d\lambda}\tag{1} dλ2d2σ=f(λ)dλdσ(1)
  此 σ \sigma σ称为仿射参量

  则此时测地线方程简化为:
d 2 x μ d σ 2 + Γ α β μ d x α d σ d x β d σ = 0 \frac{d^2 x^\mu}{d\sigma^2}+\Gamma^{\mu}_{\alpha\beta}\frac{dx^\alpha}{d\sigma}\frac{dx^\beta}{d\sigma}=0 dσ2d2xμ+Γαβμdσdxαdσdxβ=0

仿射参量的性质

  (1)由上述定义可知,当采取仿射参量时,有 f ( σ ) = 0 f(\sigma)=0 f(σ)=0,即测地线条件变为: A μ ( Q ) = A μ ( P → Q ) A^\mu(Q)=A^\mu(P\rightarrow Q) Aμ(Q)=Aμ(PQ),这里 A μ ≡ d x μ d σ A^\mu\equiv\dfrac{dx^\mu}{d\sigma} Aμdσdxμ

  (2)仿射参量并不唯一,若 σ \sigma σ σ ~ \tilde\sigma σ~是两种不同的仿射参量,则由关系式(1)可知(取 σ = σ ,   λ = σ ~ \sigma=\sigma,\ \lambda=\tilde\sigma σ=σ, λ=σ~),其变换满足 d 2 σ d σ ~ 2 = 0 \dfrac{d^2\sigma}{d\tilde\sigma^2}=0 dσ~2d2σ=0,是线性变换

4、曲率张量

描述空间性质的张量

  联络虽然是描述空间性质的重要参量,但却不是张量。因此,使用挠率张量和曲率张量来描述空间的性质

  挠率张量用于描述空间的扭曲程度:
Γ [ μ ν ] λ ≡ 1 2 [ Γ μ ν λ − Γ ν μ λ ] \Gamma^\lambda_{[\mu\nu]}\equiv \frac{1}{2}[\Gamma^\lambda_{\mu\nu}-\Gamma^\lambda_{\nu\mu}] Γ[μν]λ21[ΓμνλΓνμλ]
  曲率张量用于描述空间的弯曲程度:
R μ ν λ ρ = − Γ μ ν , λ ρ + Γ μ λ , ν ρ + Γ μ λ σ Γ σ ν ρ − Γ μ ν σ Γ σ λ ρ R^\rho_{\mu\nu\lambda}=-\Gamma^\rho_{\mu\nu,\lambda}+\Gamma^\rho_{\mu\lambda,\nu}+\Gamma^\sigma_{\mu\lambda}\Gamma^\rho_{\sigma\nu}-\Gamma^\sigma_{\mu\nu}\Gamma^\rho_{\sigma\lambda} Rμνλρ=Γμν,λρ+Γμλ,νρ+ΓμλσΓσνρΓμνσΓσλρ

曲率张量的引入

  计算协变矢量场的二阶协变微分,最后可以整理成:
T μ ; [ ν ; λ ] ≡ 1 2 [ T μ ; ν ; λ − T μ ; λ ; ν ] ≡ 1 2 ( M − H ) T_{\mu;[\nu;\lambda]}\equiv\frac{1}{2}[T_{\mu;\nu;\lambda}-T_{\mu;\lambda;\nu}]\equiv \frac{1}{2}(M-H) Tμ;[ν;λ]21[Tμ;ν;λTμ;λ;ν]21(MH)

  其中:
M ≡ T μ ; ν ; λ = ( T μ ; ν ) ; λ = T μ ; ν , λ − T μ λ ρ T ρ ; ν − T ν λ ρ T μ ; ρ = ( T μ , ν − Γ μ ν σ T σ ) , λ − Γ μ λ ρ ( T ρ , ν − Γ ρ ν σ T σ ) − Γ ν λ ρ T μ ; ρ = T μ , ν , λ − Γ μ ν , λ σ T σ − Γ μ ν σ T σ , λ − Γ μ λ ρ T ρ , ν + Γ μ λ ρ Γ ρ ν σ T σ − Γ ν λ ρ T μ ; ρ \begin{aligned} M&\equiv T_{\mu;\nu;\lambda}=(T_{\mu;\nu})_{;\lambda}=T_{\mu;\nu,\lambda}-T^\rho_{\mu\lambda}T_{\rho;\nu}-T^\rho_{\nu\lambda}T_{\mu;\rho}\\ &=(T_{\mu,\nu}-\Gamma^\sigma_{\mu\nu}T_\sigma)_{,\lambda}-\Gamma^\rho_{\mu\lambda}(T_{\rho,\nu}-\Gamma^\sigma_{\rho\nu}T_\sigma)-\Gamma^\rho_{\nu\lambda}T_{\mu;\rho}\\ &=T_{\mu,\nu,\lambda}-\Gamma^\sigma_{\mu\nu,\lambda}T_\sigma-\Gamma^\sigma_{\mu\nu}T_{\sigma,\lambda}-\Gamma^\rho_{\mu\lambda}T_{\rho,\nu}+\Gamma^\rho_{\mu\lambda}\Gamma^\sigma_{\rho\nu}T_\sigma-\Gamma^\rho_{\nu\lambda}T_{\mu;\rho} \end{aligned} MTμ;ν;λ=(Tμ;ν);λ=Tμ;ν,λTμλρTρ;νTνλρTμ;ρ=(Tμ,νΓμνσTσ),λΓμλρ(Tρ,νΓρνσTσ)ΓνλρTμ;ρ=Tμ,ν,λΓμν,λσTσΓμνσTσ,λΓμλρTρ,ν+ΓμλρΓρνσTσΓνλρTμ;ρ

H ≡ T μ ; λ ; ν = T μ , λ , ν − Γ μ λ , ν σ T σ − Γ μ λ σ T σ , ν − Γ μ ν ρ T ρ , λ + Γ μ ν ρ Γ ρ λ σ T σ − Γ λ ν ρ T μ ; ρ \begin{aligned} H&\equiv T_{\mu;\lambda;\nu}\\ &= T_{\mu,\lambda,\nu}-\Gamma^\sigma_{\mu\lambda,\nu}T_\sigma-\Gamma^\sigma_{\mu\lambda}T_{\sigma,\nu}-\Gamma^\rho_{\mu\nu}T_{\rho,\lambda}+\Gamma^\rho_{\mu\nu}\Gamma^\sigma_{\rho\lambda}T_\sigma-\Gamma^\rho_{\lambda\nu}T_{\mu;\rho} \end{aligned} HTμ;λ;ν=Tμ,λ,νΓμλ,νσTσΓμλσTσ,νΓμνρTρ,λ+ΓμνρΓρλσTσΓλνρTμ;ρ

  逐项相互抵消后,得到:
T μ ; [ ν ; λ ] = 1 2 ( R μ ν λ ρ T ρ − 2 Γ [ ν λ ] ρ T μ ; ρ ) T_{\mu;[\nu;\lambda]}=\frac{1}{2}(R^\rho_{\mu\nu\lambda}T_\rho-2\Gamma^\rho_{[\nu\lambda]}T_{\mu;\rho}) Tμ;[ν;λ]=21(RμνλρTρ2Γ[νλ]ρTμ;ρ)
   R μ ν λ ρ R^\rho_{\mu\nu\lambda} Rμνλρ即为曲率张量:
R μ ν λ ρ = − Γ μ ν , λ ρ + Γ μ λ , ν ρ + Γ μ λ σ Γ σ ν ρ − Γ μ ν σ Γ σ λ ρ R^\rho_{\mu\nu\lambda}=-\Gamma^\rho_{\mu\nu,\lambda}+\Gamma^\rho_{\mu\lambda,\nu}+\Gamma^\sigma_{\mu\lambda}\Gamma^\rho_{\sigma\nu}-\Gamma^\sigma_{\mu\nu}\Gamma^\rho_{\sigma\lambda} Rμνλρ=Γμν,λρ+Γμλ,νρ+ΓμλσΓσνρΓμνσΓσλρ

曲率张量的性质

  (1) R μ ν λ ρ = − R μ λ ν ρ R^\rho_{\mu\nu\lambda}=-R^\rho_{\mu\lambda\nu} Rμνλρ=Rμλνρ,指标 ν \nu ν λ \lambda λ反对称

  (2)曲率张量有两种缩并的方式: A μ ν ≡ R λ μ ν λ A_{\mu\nu}\equiv R^\lambda_{\lambda\mu\nu} AμνRλμνλ R μ ν ≡ R μ ν λ λ R_{\mu\nu}\equiv R^\lambda_{\mu\nu\lambda} RμνRμνλλ

  (3)曲率和挠率共同刻画了空间弯曲的情况,若在空间某区域 V V V内,曲率张量和挠率张量恒为零,则总能找到一个合适的坐标系 x μ x^\mu xμ,使得 Γ μ ν λ = 0 \Gamma^\lambda_{\mu\nu}=0 Γμνλ=0,此时测地线方程变为 d 2 x μ d σ 2 = 0 \dfrac{d^2x^\mu}{d\sigma^2}=0 dσ2d2xμ=0,即直线,表明空间 V V V平坦。曲率和挠率张量是否都为零,是空间是否平坦的标志

5、黎曼空间与度规张量

黎曼空间

  在仿射空间中引入度规和不变距离,则构成黎曼空间,定义空间相邻两点的距离 d s ds ds
d s 2 = g μ ν d x μ d x ν = g ( μ ν ) d x μ d x ν + g [ μ ν ] d x μ d x ν ≡ − d τ 2 ds^2=g_{\mu\nu}dx^\mu dx^\nu=g_{(\mu\nu)}dx^\mu dx^\nu+g_{[\mu\nu]}dx^\mu dx^\nu\equiv -d\tau^2 ds2=gμνdxμdxν=g(μν)dxμdxν+g[μν]dxμdxνdτ2

  其中, τ \tau τ为四维时空的固有时

  规定:

  (1) d s ds ds是标量,与坐标选择无关 → \rightarrow g μ ν g_{\mu\nu} gμν是二阶协变张量,即度规张量

  (2) g μ ν g_{\mu\nu} gμν是对称张量, g [ μ ν ] = 0 g_{[\mu\nu]}=0 g[μν]=0。因为 g μ ν g_{\mu\nu} gμν的反对称组合对 d s ds ds无贡献,无法定义

  在仿射空间中确定了度规后,空间任意两点间的距离就有了意义,这样的空间称为黎曼空间

平坦的黎曼空间

  对于一个黎曼空间,如果能够适当地选取坐标系,使得度规张量具有如下形式:
g μ ν = { ± 1 ,   μ = ν 0 ,   μ ≠ ν (2) g_{\mu\nu}= \left\{\begin{aligned} &\pm 1,\ \mu=\nu\\ &0,\ \mu\neq\nu \end{aligned}\right.\tag{2} gμν={±1, μ=ν0, μ=ν(2)
  则这个空间是平坦的黎曼空间。欧氏空间和闵氏空间都是平坦的

  例如,在三维欧式空间中:
( x 1 = x ,   x 2 = y ,   x 3 = z ) d s 2 = d x 2 + d y 2 + d z 2 g μ ν = ( 1 0 0 0 1 0 0 0 1 ) (x^1=x,\ x^2=y,\ x^3=z)\\ ds^2=dx^2+dy^2+dz^2\\ g_{\mu\nu}=\left(\begin{matrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{matrix}\right) (x1=x, x2=y, x3=z)ds2=dx2+dy2+dz2gμν=100010001
  球坐标:
( x 1 = r ,   x 2 = θ ,   x 3 = φ ) d s 2 = d r 2 + r 2 d θ 2 + r 2 sin ⁡ 2 θ d φ 2 g μ ν = ( 1 0 0 0 r 2 0 0 0 r 2 sin ⁡ 2 θ ) (x^1=r,\ x^2=\theta,\ x^3=\varphi)\\ ds^2=dr^2+r^2 d\theta^2+r^2\sin^2\theta d\varphi^2\\ g_{\mu\nu}=\left(\begin{matrix} 1 & 0 & 0\\ 0 & r^2 & 0\\ 0 & 0 & r^2\sin^2\theta \end{matrix}\right) (x1=r, x2=θ, x3=φ)ds2=dr2+r2dθ2+r2sin2θdφ2gμν=1000r2000r2sin2θ
  **定理:**对于常系数的二次型 d s 2 = g μ ν d x μ d x ν ds^2=g_{\mu\nu}dx^\mu dx^\nu ds2=gμνdxμdxν,只要 det ⁡ ∣ g μ ν ∣ ≠ 0 \det|g_{\mu\nu}|\neq 0 detgμν=0,则必能找到坐标变换,把这个二次型化为坐标微分的平方和(差),即坐标变换后满足式(2)

  黎曼空间中,每一点都可以看做是平坦的。一般 g μ ν g_{\mu\nu} gμν不是常数,但对于空间中任一 P P P点, g μ ν g_{\mu\nu} gμν总是常数,因此在该点的度规 g μ ν ( P ) g_{\mu\nu}(P) gμν(P)总是可以化成式(2)的形式

黎曼空间中张量指标的升降

  在黎曼空间中,有了度规 g μ ν g_{\mu\nu} gμν,就可以用这个度规来升降张量的指标:

  (1)当 det ⁡ ∣ g μ ν ∣ ≠ 0 \det|g_{\mu\nu}|\neq 0 detgμν=0时,定义逆变的度规张量 g μ ν g^{\mu\nu} gμν,满足 g μ ν g ν λ = δ λ μ g^{\mu\nu}g_{\nu\lambda}=\delta^\mu_\lambda gμνgνλ=δλμ

  (2)用 g μ ν g_{\mu\nu} gμν降指标,用 g μ ν g^{\mu\nu} gμν升指标,例如:
T μ ≡ g μ ν T ν ,   T μ ν ≡ g μ α T α ν ,   T μ ≡ g μ ν T ν ,   T μ ν ≡ g μ α T α ν T_\mu\equiv g_{\mu\nu}T^\nu,\ T_{\mu\nu}\equiv g_{\mu\alpha}{T^\alpha}_\nu,\ T^\mu\equiv g^{\mu\nu}T_\nu,\ T^{\mu\nu}\equiv g^{\mu\alpha}{T_\alpha}^\nu TμgμνTν, TμνgμαTαν, TμgμνTν, TμνgμαTαν
  黎曼空间的新特点就在于,可以利用度规张量,把任意张量形式的物理量或几何量,表示成逆变的、协变的、或者混合的形式

  举例:

  (1)定义矢量长度, A μ → A^\mu\rightarrow Aμ它的长度
长 度 的 平 方 ← g μ ν T μ T ν = T μ T μ = g μ ν T μ T ν 长度的平方\leftarrow g_{\mu\nu}T^\mu T^\nu=T_\mu T^\mu = g^{\mu\nu}T_\mu T_\nu gμνTμTν=TμTμ=gμνTμTν
  (2)
d s 2 = g μ ν d x μ d x ν = d x ν d x ν = δ ν μ d x μ d x ν = g μ ν d x μ d x ν ds^2=g_{\mu\nu}dx^\mu dx^\nu= dx_\nu dx^\nu =\delta^\mu_\nu dx_\mu dx^\nu=g^{\mu\nu}dx_\mu dx_\nu ds2=gμνdxμdxν=dxνdxν=δνμdxμdxν=gμνdxμdxν

6、Christoffel联络与黎曼空间中的测地线

Christoffel联络

  Christoffel联络的定义,是在仿射联络的基础上再加上两个条件:

  (1)要求在黎曼空间中,平移操作保证矢量的长度不变

  (2)采取对称联络 Γ μ ν λ = Γ ν μ λ \Gamma^\lambda_{\mu\nu}=\Gamma^\lambda_{\nu\mu} Γμνλ=Γνμλ,即挠率为零。GR采用它,因此之后的讨论全部采用对称联络

  对于 P P P点的逆变矢量 A μ ( P ) → Q A^\mu(P)\rightarrow Q Aμ(P)Q点变成 A μ ( P → Q ) A^\mu(P\rightarrow Q) Aμ(PQ)(借助联络平移):
A μ ( P → Q ) = A μ ( P ) − Γ ν λ μ ( P ) A ν ( P ) d x λ A^\mu(P\rightarrow Q)=A^\mu(P)-\Gamma^\mu_{\nu\lambda}(P)A^\nu(P)dx^\lambda Aμ(PQ)=Aμ(P)Γνλμ(P)Aν(P)dxλ
  矢量平移前后长度相等要求:
g μ ν ( Q ) A μ ( P → Q ) A ν ( P → Q ) = g μ ν ( P ) A μ ( P ) A ν ( P ) g_{\mu\nu}(Q)A^\mu(P\rightarrow Q)A^\nu(P\rightarrow Q)=g_{\mu\nu}(P)A^\mu(P)A^\nu(P) gμν(Q)Aμ(PQ)Aν(PQ)=gμν(P)Aμ(P)Aν(P)
  结合度规场的微分公式:
g μ ν ( Q ) = g μ ν ( P ) + g μ ν , λ ( P ) d x λ g_{\mu\nu}(Q)=g_{\mu\nu}(P)+g_{\mu\nu,\lambda}(P)dx^\lambda gμν(Q)=gμν(P)+gμν,λ(P)dxλ
  可以得到能保持长度的联络所必须满足的方程:
g μ ν , λ − g α ν Γ μ λ α − g μ α Γ ν λ α = 0 g_{\mu\nu,\lambda}-g_{\alpha\nu}\Gamma^\alpha_{\mu\lambda}-g_{\mu\alpha}\Gamma^\alpha_{\nu\lambda}=0 gμν,λgανΓμλαgμαΓνλα=0
  可以用度规来表示克氏联络:
g μ ν , λ − g α ν Γ μ λ α − g μ α Γ ν λ α = 0 → Γ λ μ κ = 1 2 g ν κ ( g μ ν , λ + g ν λ , μ − g λ μ , ν ) g_{\mu\nu,\lambda}-g_{\alpha\nu}\Gamma^\alpha_{\mu\lambda}-g_{\mu\alpha}\Gamma^\alpha_{\nu\lambda}=0\rightarrow \Gamma^\kappa_{\lambda\mu}=\frac{1}{2}g^{\nu\kappa}(g_{\mu\nu,\lambda}+g_{\nu\lambda,\mu}-g_{\lambda\mu,\nu}) gμν,λgανΓμλαgμαΓνλα=0Γλμκ=21gνκ(gμν,λ+gνλ,μgλμ,ν)
证明:(可以用度规来表示克氏联络)
g μ ν , λ − g α ν Γ μ λ α − g μ α Γ ν λ α = 0 (1) g_{\mu\nu,\lambda}-g_{\alpha\nu}\Gamma^\alpha_{\mu\lambda}-g_{\mu\alpha}\Gamma^\alpha_{\nu\lambda}=0\tag{1} gμν,λgανΓμλαgμαΓνλα=0(1)
  进行下标轮换 μ → ν ,   ν → λ ,   λ → μ \mu\rightarrow \nu,\ \nu\rightarrow \lambda,\ \lambda\rightarrow \mu μν, νλ, λμ
g ν λ , μ − g α λ Γ ν μ α − g ν α Γ λ ν α = 0 (2) g_{\nu\lambda,\mu}-g_{\alpha\lambda}\Gamma^\alpha_{\nu\mu}-g_{\nu\alpha}\Gamma^\alpha_{\lambda\nu}=0\tag{2} gνλ,μgαλΓνμαgναΓλνα=0(2)
  继续进行下标轮换 μ → ν ,   ν → λ ,   λ → μ \mu\rightarrow \nu,\ \nu\rightarrow \lambda,\ \lambda\rightarrow \mu μν, νλ, λμ
g λ μ , ν − g α μ Γ λ ν α − g λ α Γ μ ν α = 0 (3) g_{\lambda\mu,\nu}-g_{\alpha\mu}\Gamma^\alpha_{\lambda\nu}-g_{\lambda\alpha}\Gamma^\alpha_{\mu\nu}=0\tag{3} gλμ,νgαμΓλναgλαΓμνα=0(3)
  (1)+(2)-(3),得到:
( g μ ν , λ + g ν λ , μ − g λ μ , ν ) + ( − g α ν Γ μ λ α − g μ α Γ ν λ α − g α λ Γ ν μ α − g ν α Γ λ μ α + g α μ Γ λ ν α + g λ α Γ μ ν α ) = 0 \begin{aligned} &(g_{\mu\nu,\lambda}+g_{\nu\lambda,\mu}-g_{\lambda\mu,\nu})+(-g_{\alpha\nu}\Gamma^\alpha_{\mu\lambda}-g_{\mu\alpha}\Gamma^\alpha_{\nu\lambda}-g_{\alpha\lambda}\Gamma^\alpha_{\nu\mu}\\ &-g_{\nu\alpha}\Gamma^{\alpha}_{\lambda\mu}+g_{\alpha\mu}\Gamma^\alpha_{\lambda\nu}+g_{\lambda\alpha}\Gamma^\alpha_{\mu\nu})=0 \end{aligned} (gμν,λ+gνλ,μgλμ,ν)+(gανΓμλαgμαΓνλαgαλΓνμαgναΓλμα+gαμΓλνα+gλαΓμνα)=0
  最后得到:
g α ν Γ λ μ α = 1 2 ( g μ ν , λ + g ν λ , μ − g λ μ , ν ) g ν κ g α ν Γ λ μ α = 1 2 ( g μ ν , λ + g ν λ , μ − g λ μ , ν ) g ν κ Γ λ μ κ = 1 2 g ν κ ( g μ ν , λ + g ν λ , μ − g λ μ , ν ) g_{\alpha\nu}\Gamma^\alpha_{\lambda\mu}=\frac{1}{2}(g_{\mu\nu, \lambda}+g_{\nu\lambda,\mu}-g_{\lambda\mu,\nu})\\ g^{\nu\kappa}g_{\alpha\nu}\Gamma^\alpha_{\lambda\mu}=\frac{1}{2}(g_{\mu\nu, \lambda}+g_{\nu\lambda,\mu}-g_{\lambda\mu,\nu})g^{\nu\kappa}\\ \Gamma^\kappa_{\lambda\mu}=\frac{1}{2}g^{\nu\kappa}(g_{\mu\nu,\lambda}+g_{\nu\lambda,\mu}-g_{\lambda\mu,\nu}) gανΓλμα=21(gμν,λ+gνλ,μgλμ,ν)gνκgανΓλμα=21(gμν,λ+gνλ,μgλμ,ν)gνκΓλμκ=21gνκ(gμν,λ+gνλ,μgλμ,ν)
QED.

  度规张量的协变微分:
g μ ν ; λ = g μ ν , λ − g α ν Γ μ λ α − g μ α Γ ν λ α = 0 g_{\mu\nu;\lambda}=g_{\mu\nu,\lambda}-g_{\alpha\nu}\Gamma^\alpha_{\mu\lambda}-g_{\mu\alpha}\Gamma^\alpha_{\nu\lambda}=0 gμν;λ=gμν,λgανΓμλαgμαΓνλα=0

GR中等效原理的数学基础

  对于在坐标 x μ x^\mu xμ P P P点的联络 ( Γ μ ν λ ) P (\Gamma^\lambda_{\mu\nu})_P (Γμνλ)P,总可以找到坐标变换 x μ → x ~ μ x^\mu\rightarrow \tilde x^\mu xμx~μ,使得 ( Γ ~ μ ν γ ) P = 0 (\tilde \Gamma^\gamma_{\mu\nu})_P=0 (Γ~μνγ)P=0

证明:

  定义坐标变换,在 P P P点的邻域内,使其满足:
x μ − x P μ = ( x ~ μ − x ~ P μ ) − 1 2 Γ α β μ ( x ~ α − x ~ P α ) ( x ~ β − x ~ P β ) x^\mu-x^\mu_P=(\tilde x^\mu-\tilde x^\mu_P)-\frac{1}{2}\Gamma^\mu_{\alpha\beta}(\tilde x^\alpha-\tilde x_P^\alpha)(\tilde x^\beta-\tilde x_P^\beta) xμxPμ=(x~μx~Pμ)21Γαβμ(x~αx~Pα)(x~βx~Pβ)
  令 x ~ P μ = 0 \tilde x^\mu_P=0 x~Pμ=0,则有:
x μ − x P μ = x ~ μ − 1 2 Γ α β μ x ~ α x ~ β x^\mu-x^\mu_P=\tilde x^\mu-\frac{1}{2}\Gamma^\mu_{\alpha\beta}\tilde x^\alpha\tilde x^\beta xμxPμ=x~μ21Γαβμx~αx~β

( ∂ x μ ∂ x ~ λ ) P = δ λ μ ,   ( ∂ x ~ μ ∂ x λ ) P = δ λ μ ,   ( ∂ 2 x μ ∂ x ~ λ ∂ x ~ ν ) P = − Γ λ ν μ \left(\frac{\partial x^\mu}{\partial\tilde x^\lambda}\right)_P=\delta^\mu_\lambda,\ \left(\frac{\partial \tilde x^\mu}{\partial x^\lambda}\right)_P=\delta^\mu_\lambda,\ \left(\frac{\partial^2 x^\mu}{\partial \tilde x^\lambda\partial \tilde x^\nu}\right)_P=-\Gamma^\mu_{\lambda\nu} (x~λxμ)P=δλμ, (xλx~μ)P=δλμ, (x~λx~ν2xμ)P=Γλνμ

  所以在坐标变换下, Γ α β μ \Gamma^\mu_{\alpha\beta} Γαβμ的变换关系为:
Γ ~ μ ν λ = ∂ 2 x β ∂ x ~ μ ∂ x ~ ν ∂ x ~ μ ∂ x β + ∂ x α ∂ x ~ μ ∂ x ~ λ ∂ x β ∂ x σ ∂ x ~ ν Γ α σ β = − Γ μ ν β δ β λ + Γ α σ β δ μ α δ ν σ δ β λ = − Γ μ ν λ + Γ μ ν λ = 0 \begin{aligned} \tilde\Gamma^\lambda_{\mu\nu}&=\frac{\partial^2 x^\beta}{\partial\tilde x^\mu\partial \tilde x^\nu}\frac{\partial\tilde x^\mu}{\partial x^\beta}+\frac{\partial x^\alpha}{\partial \tilde x^\mu}\frac{\partial \tilde x^\lambda}{\partial x^\beta}\frac{\partial x^\sigma}{\partial \tilde x^\nu}\Gamma^\beta_{\alpha\sigma}\\ &=-\Gamma^\beta_{\mu\nu}\delta^\lambda_\beta+\Gamma^\beta_{\alpha\sigma}\delta^\alpha_\mu\delta^\sigma_\nu\delta^\lambda_\beta\\ &=-\Gamma^\lambda_{\mu\nu}+\Gamma^\lambda_{\mu\nu}\\ &=0 \end{aligned} Γ~μνλ=x~μx~ν2xβxβx~μ+x~μxαxβx~λx~νxσΓασβ=Γμνβδβλ+Γασβδμαδνσδβλ=Γμνλ+Γμνλ=0
QED.

  忽略掉 p p p阶导数时, ( g ~ μ ν , λ ) p = 0 → g ~ μ ν = c o n s t (\tilde g_{\mu\nu,\lambda})_p=0\rightarrow \tilde g_{\mu\nu}=const (g~μν,λ)p=0g~μν=const,平坦(等效原理)

黎曼空间中的测地线

  在仿射空间中,测地线方程为:
d 2 x μ d λ 2 + Γ α β μ d x α d λ d x β d λ = f ( λ ) d x μ d λ \frac{d^2 x^\mu}{d\lambda^2}+\Gamma^\mu_{\alpha\beta}\frac{dx^\alpha}{d\lambda}\frac{dx^\beta}{d\lambda}=f(\lambda)\frac{dx^\mu}{d\lambda} dλ2d2xμ+Γαβμdλdxαdλdxβ=f(λ)dλdxμ

d 2 x μ d σ 2 + Γ α β μ d x α d σ d x β d σ = 0 \frac{d^2 x^\mu}{d\sigma^2}+\Gamma^\mu_{\alpha\beta}\frac{dx^\alpha}{d\sigma}\frac{dx^\beta}{d\sigma}=0 dσ2d2xμ+Γαβμdσdxαdσdxβ=0

  在GR中,自由粒子在弯曲时空中走的是测地线

  在黎曼空间中,引入了线元 s s s(原时 τ \tau τ),即 d s 2 = g μ ν d x μ d x ν ds^2=g_{\mu\nu}dx^\mu dx^\nu ds2=gμνdxμdxν,因此对任一曲线,可以引入一个标量积分 s = ∫ P 0 P d s s=\int^P_{P_0}ds s=P0Pds,其中 P 0 P_0 P0是某个固定点, P P P是任意点,则 s s s是曲线上 P 0 P_0 P0 P P P的“固有长度”

  在黎曼空间中, s s s(等价的 τ \tau τ)就是一个仿射参量(仅对有质量粒子而言,因为对于无质量粒子, s = 0 s=0 s=0无意义)

证明:

   s s s(或 τ \tau τ)作为标量型参量,则曲线 x μ ( s ) x^\mu(s) xμ(s)的切矢量 U μ U^\mu Uμ
U μ ≡ d x μ d τ U^\mu\equiv\frac{dx^\mu}{d\tau} Uμdτdxμ

d s 2 = g μ ν d x μ d x ν = − d τ 2 ds^2=g_{\mu\nu}dx^\mu dx^\nu=-d\tau^2 ds2=gμνdxμdxν=dτ2

  上式两端同除 d τ 2 d\tau^2 dτ2
g μ ν d x μ d τ d x ν d τ = g μ ν U μ U ν = − 1 g_{\mu\nu}\frac{dx^\mu}{d\tau}\frac{dx^\nu}{d\tau}=g_{\mu\nu}U^\mu U^\nu =-1 gμνdτdxμdτdxν=gμνUμUν=1
  对 λ \lambda λ求微分:
g μ ν ; λ U μ U ν + g μ ν U ; λ μ U ν + g μ ν U μ U ; λ ν = 0 g_{\mu\nu;\lambda}U^\mu U^\nu+g_{\mu\nu}U^\mu_{;\lambda}U^\nu+g_{\mu\nu}U^\mu U^\nu_{;\lambda}=0 gμν;λUμUν+gμνU;λμUν+gμνUμU;λν=0
  其中,第一项为0,从而得到:
U ν ; λ U ν + U ν U ; λ ν = 0 U ν U ; λ ν = 0 U_{\nu;\lambda}U^\nu+U_\nu U^\nu_{;\lambda}=0\\ U_\nu U^\nu_{;\lambda}=0 Uν;λUν+UνU;λν=0UνU;λν=0
  在测地线方程两端乘上 U μ U_\mu Uμ,得到:
f ( τ ) = − U μ { d U μ d τ + Γ α β μ U α U β } = − U μ { d U μ d x β d x β d τ + Γ α β μ U α U β } = − U μ ( U , β μ U β + Γ α β μ U α U β ) = − U μ U β ( U , β μ + Γ α β μ U α ) = − U μ U ; β μ U β = 0 \begin{aligned} f(\tau)&=-U_\mu\left\{\frac{dU^\mu}{d\tau}+\Gamma^\mu_{\alpha\beta}U^\alpha U^\beta\right\}\\ &=-U_\mu\left\{\frac{dU^\mu}{dx^\beta}\frac{dx^\beta}{d\tau}+\Gamma^\mu_{\alpha\beta}U^\alpha U^\beta\right\}\\ &=-U_\mu(U^\mu_{,\beta}U^\beta+\Gamma^\mu_{\alpha\beta}U^\alpha U^\beta)\\ &=-U_\mu U^\beta(U^\mu_{,\beta}+\Gamma^\mu_{\alpha\beta}U^\alpha)\\ &=-U_\mu U^\mu_{;\beta}U^\beta\\ &=0 \end{aligned} f(τ)=Uμ{dτdUμ+ΓαβμUαUβ}=Uμ{dxβdUμdτdxβ+ΓαβμUαUβ}=Uμ(U,βμUβ+ΓαβμUαUβ)=UμUβ(U,βμ+ΓαβμUα)=UμU;βμUβ=0
  由此得到黎曼空间中的测地线方程:
d 2 x μ d τ 2 + Γ α β μ d x α d τ d x β d τ = 0 \frac{d^2 x^\mu}{d\tau^2}+\Gamma^\mu_{\alpha\beta}\frac{dx^\alpha}{d\tau}\frac{dx^\beta}{d\tau}=0 dτ2d2xμ+Γαβμdτdxαdτdxβ=0
QED.

  此为有质量粒子的运动方程。对于无质量粒子,随便找一个仿射参量

测地线的另一重含义

  已知在仿射空间中,线上相邻两点的切矢量都相互平行的曲线为测地线。欧氏空间中,两点之间直线最短。可以证明:对黎曼空间中任意两点间的距离,测地线是最短或最长的

简单证明:

  测地线方程的变分为零:
δ ∫ d s = 0 δ ∫ ( g μ ν d x μ d x ν ) 1 2 = 0 δ ∫ ( g μ ν x ˙ μ x ˙ ν ) 1 2 d s = 0 \begin{aligned} \delta\int ds&=0\\ \delta\int (g_{\mu\nu}dx^\mu dx^\nu)^\frac{1}{2} &=0\\ \delta\int (g_{\mu\nu}\dot x^\mu \dot x^\nu)^\frac{1}{2}ds&=0 \end{aligned} δdsδ(gμνdxμdxν)21δ(gμνx˙μx˙ν)21ds=0=0=0
  其中, x ˙ μ ≡ d x μ d s \dot x^\mu\equiv \dfrac{dx^\mu}{ds} x˙μdsdxμ

  拉氏量 L = ( g μ ν x ˙ μ x ˙ ν ) 1 2 \mathcal L=(g_{\mu\nu}\dot x^\mu\dot x^\nu)^\frac{1}{2} L=(gμνx˙μx˙ν)21,拉格朗日方程:
∂ L ∂ x λ − d d s ∂ L ∂ x ˙ λ = 0 ∂ g μ ν ∂ x λ x ˙ μ x ˙ ν − d d s ( g μ ν x ˙ μ + g λ ν x ˙ ν ) = 0 d d s ( g μ λ x ˙ μ ) = 1 2 ∂ g μ ν ∂ x λ x ˙ μ x ˙ ν g μ λ d 2 x μ d s 2 + ( ∂ g μ ν ∂ x ν − 1 2 ∂ g μ ν ∂ x λ ) d x ν d s d x μ d s = 0 \begin{aligned} \frac{\partial \mathcal L}{\partial x^\lambda}-\frac{d}{ds}\frac{\partial \mathcal L}{\partial \dot x^\lambda}&=0\\ \frac{\partial g_{\mu\nu}}{\partial x^\lambda} \dot x^\mu\dot x^\nu-\frac{d}{ds}(g_{\mu\nu}\dot x^\mu+g_{\lambda\nu}\dot x^\nu)&=0\\ \frac{d}{ds}(g_{\mu\lambda}\dot x^\mu) &=\frac{1}{2}\frac{\partial g_{\mu\nu}}{\partial x^\lambda}\dot x^\mu\dot x^\nu\\ g_{\mu\lambda}\frac{d^2 x^\mu}{ds^2}+\left(\frac{\partial g_{\mu\nu}}{\partial x^\nu}-\frac{1}{2}\frac{\partial g_{\mu\nu}}{\partial x^\lambda}\right)\frac{dx^\nu}{ds}\frac{dx^\mu}{ds}&=0 \end{aligned} xλLdsdx˙λLxλgμνx˙μx˙νdsd(gμνx˙μ+gλνx˙ν)dsd(gμλx˙μ)gμλds2d2xμ+(xνgμν21xλgμν)dsdxνdsdxμ=0=0=21xλgμνx˙μx˙ν=0

  两端同乘 g λ σ g^{\lambda\sigma} gλσ
d 2 x σ d s 2 + g λ σ ( ∂ g μ λ ∂ x ν − 1 2 ∂ g μ ν ∂ x λ ) d x ν d s d x μ d s = 0 d 2 x σ d s 2 + 1 2 g λ σ ( 2 ∂ g μ λ ∂ x ν − ∂ g μ ν ∂ x λ ) d x ν d s d x μ d s = 0 \begin{aligned} \frac{d^2 x^\sigma}{ds^2}+ g^{\lambda\sigma}\left(\frac{\partial g_{\mu\lambda}}{\partial x^\nu}-\frac{1}{2}\frac{\partial g_{\mu\nu}}{\partial x^\lambda}\right)\frac{dx^\nu}{ds}\frac{dx^\mu}{ds}&=0\\ \frac{d^2 x^\sigma}{ds^2}+ \frac{1}{2}g^{\lambda\sigma}\left(2\frac{\partial g_{\mu\lambda}}{\partial x^\nu}-\frac{\partial g_{\mu\nu}}{\partial x^\lambda}\right)\frac{dx^\nu}{ds}\frac{dx^\mu}{ds}&=0 \end{aligned} ds2d2xσ+gλσ(xνgμλ21xλgμν)dsdxνdsdxμds2d2xσ+21gλσ(2xνgμλxλgμν)dsdxνdsdxμ=0=0
  因为 μ ,   ν \mu,\ \nu μ, ν对标,所以:
d 2 x σ d s 2 + 1 2 g λ σ ( ∂ g μ λ ∂ x ν + ∂ g ν λ ∂ x μ − ∂ g μ ν ∂ x λ ) d x ν d s d x μ d s = 0 d 2 x σ d s 2 + Γ μ ν σ d x ν d s d x μ d s = 0 \begin{aligned} \frac{d^2 x^\sigma}{ds^2}+\frac{1}{2}g^{\lambda \sigma}\left(\frac{\partial g_{\mu\lambda}}{\partial x^\nu}+\frac{\partial g_{\nu\lambda}}{\partial x^\mu}-\frac{\partial g_{\mu\nu}}{\partial x^\lambda}\right)\frac{dx^\nu}{ds}\frac{dx^\mu}{ds}&=0\\ \frac{d^2 x^\sigma}{ds^2}+\Gamma^\sigma_{\mu\nu}\frac{dx^\nu}{ds}\frac{dx^\mu}{ds}&=0 \end{aligned} ds2d2xσ+21gλσ(xνgμλ+xμgνλxλgμν)dsdxνdsdxμds2d2xσ+Γμνσdsdxνdsdxμ=0=0
  此即测地线方程

QED.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值