广义相对论的数学语言是微分几何。微分几何用来描述“流形”:局部可以看做欧几里得空间,而全局形状则可能比较复杂。NNN维欧几里得空间Rn\mathcal R^nRn本身就是最简单的一种NNN维流形
数学上,NNN维流形可以写作{M,{Uα,Φα}}\{\mathcal M,\{U_\alpha,\Phi_\alpha\}\}{M,{Uα,Φα}}。其中,M\mathcal MM是一组点的集合,{Uα}\{U_\alpha\}{Uα}是M\mathcal MM中开集的集合:
M=⋃αUα
\mathcal M = \bigcup\limits_\alpha U_\alpha
M=α⋃Uα
Φα\Phi_\alphaΦα是将(Uα)(U_\alpha)(Uα)映射到NNN维欧氏空间Rn\mathcal R^nRn的可微函数:Uα→RnU_\alpha\rightarrow \mathcal R^nUα→Rn。对于M\mathcal MM上每一点ppp,至少存在一个(Uα)(U_\alpha)(Uα)使得p∈Uαp\in U_\alphap∈Uα。这样就说Φα\Phi_\alphaΦα定义了点ppp的邻域UαU_\alphaUα上的一个局域坐标系
1、n维仿射空间中的张量
仿射空间是没有起点,只有方向和大小的向量所构成的向量空间
相对论将物理规律表述为张量方程,使得在任一坐标下都具有相同的形式
张量与张量变换
坐标
nnn维空间中,一个点用nnn个数组成的数组来描述,称为该点的坐标:
xμ=(x1,x2,⋯ ,xn)
x^\mu=(x^1,x^2,\cdots ,x^n)
xμ=(x1,x2,⋯,xn)
坐标变换
考虑两组坐标系x~μ\tilde x^\mux~μ和xμx^\muxμ,它们之间具备联系:x~μ=x~μ(x)\tilde x^\mu = \tilde x^\mu (x)x~μ=x~μ(x),其中xxx代表数组xμx^\muxμ。从这个联系中可以导出任一点的坐标微分的变换公式:
dx~μ=∂x~μ∂xαdxα
d\tilde x^\mu=\frac{\partial \tilde x^\mu}{\partial x^\alpha}dx^\alpha
dx~μ=∂xα∂x~μdxα
这样就得到了变换矩阵。对于逆变情况而言,变换矩阵为∂x~M∂xα\dfrac{\partial \tilde x^M}{\partial x^\alpha}∂xα∂x~M,而对于协变情况而言,变换矩阵为∂xα∂x~M\dfrac{\partial x^\alpha}{\partial \tilde{x}^M}∂x~M∂xα
说明:
(1)由此式可见,dxμdx^\mudxμ和dx~μd\tilde x^\mudx~μ之间是线性变换,但并不说明xμx^\muxμ与x~μ\tilde x^\mux~μ之间也是线性变换
(2)变换矩阵随不同的点而不同
(3)若det∣∂x~μ∂xν∣≠0\det\left|\dfrac{\partial \tilde x^\mu}{\partial x^\nu}\right|\neq 0det∣∣∣∣∂xν∂x~μ∣∣∣∣=0或者∞\infty∞,则存在逆变换,即dxα=∂xα∂x~μdx~μdx^\alpha=\dfrac{\partial x^\alpha}{\partial \tilde x^\mu}d\tilde x^\mudxα=∂x~μ∂xαdx~μ。这两个变换矩阵满足关系:
∂x~μ∂xα∂xα∂x~ν=δνμ, ∂xα∂x~μ∂x~μ∂xβ=δβα
\frac{\partial \tilde x^\mu}{\partial x^\alpha}\frac{\partial x^\alpha}{\partial \tilde x^\nu}=\delta^\mu_\nu,\ \frac{\partial x^\alpha}{\partial \tilde x^\mu}\frac{\partial \tilde x^\mu}{\partial x^\beta}=\delta^\alpha_\beta
∂xα∂x~μ∂x~ν∂xα=δνμ, ∂x~μ∂xα∂xβ∂x~μ=δβα
逆变张量
(1)零阶(标量):有n0n^0n0个分量,并且在坐标变换下不变,即:T~(x~)=T(x)\tilde T(\tilde x)=T(x)T~(x~)=T(x)。其中,TTT为坐标xμx^\muxμ下的值,xxx和x~\tilde xx~是同一点的两组不同的坐标
(2)一阶(逆变矢量):有n1n^1n1个分量,并且在坐标变换下具有如下变换形式:
T~μ(x~μ)=∂x~μ∂xαTα(xμ)
\tilde T^\mu(\tilde x^\mu)=\dfrac{\partial \tilde x^\mu}{\partial x^\alpha}T^\alpha(x^\mu)
T~μ(x~μ)=∂xα∂x~μTα(xμ)
坐标微分dxμdx^\mudxμ是一个逆变矢量
(3)二阶:有n2n^2n2个分量,并且在坐标变换下具有如下变换形式:
T~μν(x~μ)=∂x~μ∂xα∂x~ν∂xβTαβ(xμ)
\tilde T^{\mu\nu}(\tilde x^\mu)=\frac{\partial \tilde x^\mu}{\partial x^\alpha}\frac{\partial \tilde x^\nu}{\partial x^\beta}T^{\alpha\beta}(x^\mu)
T~μν(x~μ)=∂xα∂x~μ∂xβ∂x~νTαβ(xμ)
(4)高阶以此类推
协变张量
(1)零阶(标量):与逆变相同
(2)一阶(协变矢量):
T~μ(x~μ)=∂xα∂x~μTα(xμ)
\tilde T_\mu(\tilde x^\mu)=\dfrac{\partial x^\alpha}{\partial \tilde x^\mu}T_\alpha(x^\mu)
T~μ(x~μ)=∂x~μ∂xαTα(xμ)
(3)二阶:
T~μν(x~μ)=∂xα∂x~μ∂xβ∂x~νTαβ(xμ)
\tilde T_{\mu\nu}(\tilde x^\mu)=\frac{\partial x^\alpha}{\partial \tilde x^\mu}\frac{\partial x^\beta}{\partial \tilde x^\nu}T_{\alpha\beta}(x^\mu)
T~μν(x~μ)=∂x~μ∂xα∂x~ν∂xβTαβ(xμ)
(4)高阶以此类推
混合张量
(1)Tμν{T^\mu}_\nuTμν满足变换规则:
T~μν=∂x~μ∂xα∂xβ∂x~νTαβ
{\tilde T^\mu}_\nu=\frac{\partial \tilde x^\mu}{\partial x^\alpha}\frac{\partial x^\beta}{\partial \tilde x^\nu}{T^\alpha}_\beta
T~μν=∂xα∂x~μ∂x~ν∂xβTαβ
(2)Tβ1,β2,…,βqα1,α2,…,αpT^{\alpha_1,\alpha_2,\dots,\alpha_p}_{\beta_1,\beta_2,\dots,\beta_q}Tβ1,β2,…,βqα1,α2,…,αp称为(p,q)(p,q)(p,q)阶张量
一个数组是否构成张量,在于它们在坐标变换下的变换行为
张量运算
(1)由于张量变换矩阵在不同点是不同的,所以只有在同一点的两个张量进行运算,才能保证计算结果还是张量。标量是例外
(2)张量的加法与减法:相应的分量相加或者相减,因此两个张量必须同阶,运算结果仍然是张量。例如:Cνμ=Aνμ±BνμC^\mu_\nu=A^\mu_\nu\pm B^\mu_\nuCνμ=Aνμ±Bνμ
(3)张量的乘法(外乘/直乘):例如,(1,1)(1,1)(1,1)阶AνμA^\mu_\nuAνμ与(1,0)(1,0)(1,0)阶BμB^\muBμ外乘定义为:Cλμν≡AλμBνC^{\mu\nu}_\lambda\equiv A^\mu_\lambda B^\nuCλμν≡AλμBν,得到(2,1)(2,1)(2,1)阶张量。(p1,q1)(p_1,q_1)(p1,q1)阶张量与(p2,q2)(p_2,q_2)(p2,q2)阶张量外乘得到(p1+p2,q1+q2)(p_1+p_2,q_1+q_2)(p1+p2,q1+q2)阶张量
(4)缩并:对于混合张量的某一对上下指标取相同的值并求和,例如Cν=AλλνC^\nu=A^{\lambda\nu}_\lambdaCν=Aλλν,或者Dμ=AλμλD^\mu=A^{\mu\lambda}_\lambdaDμ=Aλμλ。一般来讲,(p,q)(p,q)(p,q)阶张量缩并一次得到(p−1,q−1)(p-1,q-1)(p−1,q−1)阶张量
矢量的内积=外乘+缩并,即C=AμBμC=A^\mu B_\muC=AμBμ,结果是一个标量,但必须是一个协变矢量和一个逆变矢量才能进行
(5)张量不能定义除法运算,但如果有协变关系式,如Aμ=BνμCνA^\mu=B^\mu_\nu C^\nuAμ=BνμCν,且已知AμA^\muAμ,BνμB^\mu_\nuBνμ均为张量,则能证明CνC^\nuCν也是张量(商定理)
张量的对称性
以二阶逆变张量TμνT^{\mu\nu}Tμν为例:
(1)若Tμν=TνμT^{\mu\nu}=T^{\nu\mu}Tμν=Tνμ,则称张量TμνT^{\mu\nu}Tμν对指标μ,ν\mu,\nuμ,ν对称
(2)若Tμν=−TνμT^{\mu\nu}=-T^{\nu\mu}Tμν=−Tνμ,则称张量TμνT^{\mu\nu}Tμν对指标μ,ν\mu,\nuμ,ν反对称
(3)若TμνT^{\mu\nu}Tμν在坐标xμx^\muxμ中对称,那么在另一任意坐标系x~μ\tilde x^\mux~μ中也对称
(4)上述所有讨论对协变张量也成立
(5)上述讨论对混合张量不成立。即便混合张量在一个坐标系下对称,在另一个坐标系中也不一定对称。在提到张量的对称性时,必须是两个上指标或者两个下指标,而不能是一上一下
(6)任一不对称的二阶逆变(协变)张量可以分解为一个对称张量和一个反对称张量之和:
Tμν=Sμν+Aμν
T^{\mu\nu}=S^{\mu\nu}+A^{\mu\nu}
Tμν=Sμν+Aμν
其中:
Sμν=12(Tμν+Tνμ)≡T(μν)Aμν=12(Tμν−Tνμ)≡T[μν]
S^{\mu\nu}=\frac{1}{2}(T^{\mu\nu}+T^{\nu\mu})\equiv T^{(\mu\nu)}\\
A^{\mu\nu}=\frac{1}{2}(T^{\mu\nu}-T^{\nu\mu})\equiv T^{[\mu\nu]}
Sμν=21(Tμν+Tνμ)≡T(μν)Aμν=21(Tμν−Tνμ)≡T[μν]
(7)对于高阶对称张量,是指其对任一对上下指标都是对称的。同理,对于高阶反对称张量,是指其对任一对上(下)指标都是反对称的,例如:
Tμνλ=Tμλν=Tλνμ=Tνμλ→Tμνλ对称Tμνλ=−Tμλν=−Tλνμ=−Tνμλ→Tμνλ反对称
T^{\mu\nu\lambda}=T^{\mu\lambda\nu}=T^{\lambda\nu\mu}=T^{\nu\mu\lambda}\rightarrow T^{\mu\nu\lambda}对称\\
T^{\mu\nu\lambda}=-T^{\mu\lambda\nu}=-T^{\lambda\nu\mu}=-T^{\nu\mu\lambda}\rightarrow T^{\mu\nu\lambda}反对称
Tμνλ=Tμλν=Tλνμ=Tνμλ→Tμνλ对称Tμνλ=−Tμλν=−Tλνμ=−Tνμλ→Tμνλ反对称
(8)张量的对称化:对于任何一个张量,总是可以将其一定数目的上指标(或下指标)对称化:
T(μ1μ2⋯ )σρ=1n!(Tμ1μ2⋯ρσ+遍历μ1⋯μn置换的求和)
{{T_{(\mu_1\mu_2\cdots)}}^\sigma}_\rho=\frac{1}{n!}({T_{\mu_1\mu_2\cdots\rho}}^\sigma+遍历\mu_1\cdots\mu_n置换的求和)
T(μ1μ2⋯)σρ=n!1(Tμ1μ2⋯ρσ+遍历μ1⋯μn置换的求和)
例如:
T(μ∣ν∣ρ)=12(Tμνρ+Tρνμ)
T_{(\mu|\nu|\rho)}=\frac{1}{2}(T_{\mu\nu\rho}+T_{\rho\nu\mu})
T(μ∣ν∣ρ)=21(Tμνρ+Tρνμ)
???
(9)张量的反对称化:对于任何一个张量,总是可以将其一定数目的上指标(或下指标)反对称化:
T[μ1μ2⋯ ]ρσ=1n!(Tμ1μ2⋯ρσ+遍历μ1⋯μn置换的带符号求和)
{T_{[\mu_1\mu_2\cdots]\rho}}^\sigma=\frac{1}{n!}({T_{\mu_1\mu_2\cdots\rho}}^\sigma+遍历\mu_1\cdots\mu_n置换的带符号求和)
T[μ1μ2⋯]ρσ=n!1(Tμ1μ2⋯ρσ+遍历μ1⋯μn置换的带符号求和)
其中,带符号的意思是做了奇数次对易后,该项前面加上一个负号,例如:
T[μνρ]σ=16(Tμνρσ−Tμρνσ+Tρμνσ−Tνμρσ+Tνρμσ−Tρνμσ)
T_{[\mu\nu\rho]\sigma}=\frac{1}{6}(T_{\mu\nu\rho\sigma}-T_{\mu\rho\nu\sigma}+T_{\rho\mu\nu\sigma}-T_{\nu\mu\rho\sigma}+T_{\nu\rho\mu\sigma}-T_{\rho\nu\mu\sigma})
T[μνρ]σ=61(Tμνρσ−Tμρνσ+Tρμνσ−Tνμρσ+Tνρμσ−Tρνμσ)
2、矢量的平移,仿射联络,张量的协变微分
仿射联络的定义
设PPP点有协变张量Aμ(P)A_\mu(P)Aμ(P),将其平移至QQQ点(PPP与QQQ离的很近),记作Aμ(P→Q)A_\mu(P\rightarrow Q)Aμ(P→Q)
作为线性理论,平移引起的改变记作δAμ(P)\delta A_\mu(P)δAμ(P),要求:
(1)它正比于Aμ(P)A_\mu(P)Aμ(P)
(2)它正比于dxμdx^\mudxμ
因此,δAμ(P)\delta A_\mu(P)δAμ(P)应该具有如下表达式:
δAμ(P)≡Aμ(P→Q)−Aμ(P)=Γμνλ(P)Aλ(P)dxν
\delta A_\mu(P)\equiv A_\mu(P\rightarrow Q)-A_\mu(P)=\Gamma^\lambda_{\mu\nu}(P)A_\lambda(P)dx^\nu
δAμ(P)≡Aμ(P→Q)−Aμ(P)=Γμνλ(P)Aλ(P)dxν
此处的比例系数Γμνλ\Gamma^\lambda_{\mu\nu}Γμνλ就叫做PPP点的“仿射联络”
同时要求:
(3)Aμ(P→Q)A_\mu(P\rightarrow Q)Aμ(P→Q)在QQQ点是协变张量
仿射联络的坐标变换关系
出发点:Aμ(P→Q)A_\mu(P\rightarrow Q)Aμ(P→Q)是张量
A~μ(P→Q)=(∂xα∂x~μ)QAμ(P→Q)\tilde A_\mu(P\rightarrow Q)=\left(\dfrac{\partial x^\alpha}{\partial \tilde x^\mu}\right)_QA_\mu(P\rightarrow Q)A~μ(P→Q)=(∂x~μ∂xα)QAμ(P→Q)
PPP与QQQ相邻,所以可以用泰勒展开
(∂xα∂x~μ)Q=(∂xα∂x~μ)P+(∂2xα∂x~μ∂x~ν)dx~ν=(∂xα∂x~μ)P+(∂2xα∂x~μ∂x~ν)P(∂x~ν∂xσ)Pdxσ
\begin{aligned}
\left(\frac{\partial x^\alpha}{\partial \tilde x^\mu}\right)_Q&=\left(\frac{\partial x^\alpha}{\partial \tilde x^\mu}\right)_P+\left(\frac{\partial^2 x^\alpha}{\partial \tilde x^\mu\partial \tilde x^\nu}\right)d\tilde x^\nu\\
&=\left(\frac{\partial x^\alpha}{\partial \tilde x^\mu}\right)_P+\left(\frac{\partial^2 x^\alpha}{\partial \tilde x^\mu\partial \tilde x ^\nu}\right)_P\left(\frac{\partial \tilde x^\nu}{\partial x^\sigma}\right)_P dx^\sigma
\end{aligned}
(∂x~μ∂xα)Q=(∂x~μ∂xα)P+(∂x~μ∂x~ν∂2xα)dx~ν=(∂x~μ∂xα)P+(∂x~μ∂x~ν∂2xα)P(∂xσ∂x~ν)Pdxσ
得到:
A~μ+Γ~μνλA~λdx~ν=(∂xα∂x~μ+∂2xα∂x~μ∂x~ν∂x~ν∂xσdxσ)(Aα+ΓαγβAβdxγ)=∂xα∂x~μAα+∂2xα∂x~μ∂x~ν∂x~ν∂xσdxσAα+∂xα∂x~μΓαγβAβdxγ+O(2)
\begin{aligned}
\tilde A_\mu+\tilde\Gamma^\lambda_{\mu\nu}\tilde A_\lambda d\tilde x^\nu&=\left(\frac{\partial x^\alpha}{\partial \tilde x^\mu}+\frac{\partial ^2 x^\alpha}{\partial \tilde x^\mu\partial \tilde x^\nu}\frac{\partial \tilde x^\nu}{\partial x^\sigma}dx^\sigma\right)(A_\alpha+\Gamma^\beta_{\alpha\gamma}A_\beta dx^\gamma)\\
&=\frac{\partial x^\alpha}{\partial \tilde x^\mu}A_\alpha+\frac{\partial ^2 x^\alpha}{\partial \tilde x^\mu\partial \tilde x^\nu}\frac{\partial \tilde x^\nu}{\partial x ^\sigma}dx^\sigma A_\alpha +\frac{\partial x^\alpha}{\partial \tilde x^\mu}\Gamma^\beta_{\alpha\gamma}A_\beta dx^\gamma + O(2)
\end{aligned}
A~μ+Γ~μνλA~λdx~ν=(∂x~μ∂xα+∂x~μ∂x~ν∂2xα∂xσ∂x~νdxσ)(Aα+ΓαγβAβdxγ)=∂x~μ∂xαAα+∂x~μ∂x~ν∂2xα∂xσ∂x~νdxσAα+∂x~μ∂xαΓαγβAβdxγ+O(2)
最后得到仿射联络的变换公式:
Γ~μνλ=∂2xα∂x~μ∂x~ν∂x~λ∂xα+∂xα∂x~μ∂x~λ∂xβ∂xγ∂x~νΓαγβ
\tilde\Gamma^\lambda_{\mu\nu}=\frac{\partial ^2 x^\alpha}{\partial\tilde x^\mu \partial \tilde x^\nu}\frac{\partial\tilde x^\lambda}{\partial x^\alpha}+\frac{\partial x^\alpha}{\partial \tilde x^\mu}\frac{\partial \tilde x^\lambda}{\partial x^\beta}\frac{\partial x^\gamma}{\partial \tilde x^\nu}\Gamma^\beta_{\alpha\gamma}
Γ~μνλ=∂x~μ∂x~ν∂2xα∂xα∂x~λ+∂x~μ∂xα∂xβ∂x~λ∂x~ν∂xγΓαγβ
仿射联络的性质
(1)对于逆变矢量Aμ(P)A^\mu(P)Aμ(P),可以证明:
Aμ(P→Q)=Aμ(P)+δAμ=Aμ(P)−Γλνμ(P)Aλ(P)dxν
A^\mu(P\rightarrow Q)=A^\mu(P)+\delta A^\mu=A^\mu(P)-\Gamma^\mu_{\lambda\nu}(P)A^\lambda(P)dx^\nu
Aμ(P→Q)=Aμ(P)+δAμ=Aμ(P)−Γλνμ(P)Aλ(P)dxν
(2)Γμνλ\Gamma^\lambda_{\mu\nu}Γμνλ不是张量,除非(???)
(3)容易得到:若同一仿射空间中引入两个联络1Γμνλ_1\Gamma^\lambda_{\mu\nu}1Γμνλ和2Γμνλ_2\Gamma^\lambda_{\mu\nu}2Γμνλ,则其差是一个(1,2)(1,2)(1,2)阶张量
(4)容易得到:若联络的两个下指标不对称,那么将其变换顺序构成的新的量也是联络
(5)联络的对称组合也是联络,即:Γ(μν)λ≡12(Γμνλ+Γνμλ)\Gamma^\lambda_{(\mu\nu)}\equiv\dfrac{1}{2}(\Gamma^\lambda_{\mu\nu}+\Gamma^\lambda_{\nu\mu})Γ(μν)λ≡21(Γμνλ+Γνμλ)是联络
(6)联络的反对称组合是一个张量,即:Γ[μν]λ≡12(Γμνλ−Γνμλ)\Gamma^\lambda_{[\mu\nu]}\equiv\dfrac{1}{2}(\Gamma^\lambda_{\mu\nu}-\Gamma^\lambda_{\nu\mu})Γ[μν]λ≡21(Γμνλ−Γνμλ)是一个张量,称为“挠率张量”。挠率张量表征了空间的扭曲程度,它的绝对值度量了曲线上相邻两点的次法向量(与PPP点的切向及法向量都垂直的向量)之间的夹角对弧长的变化率
(7)任一联络,总可以作如下分解:
Γμνλ≡Γ(μν)λ+Γ[μν]λ
\Gamma^\lambda_{\mu\nu}\equiv \Gamma^\lambda_{(\mu\nu)}+\Gamma^\lambda_{[\mu\nu]}
Γμνλ≡Γ(μν)λ+Γ[μν]λ
张量的协变微分
标量的协变微分
标量场的微商:T(x)T(x)T(x)对xμx^\muxμ的普通微商,记作T,μT_{,\mu}T,μ,即:
T,μ≡∂T∂xμ
T_{,\mu}\equiv\frac{\partial T}{\partial x^\mu}
T,μ≡∂xμ∂T
作如下坐标变化:
T~,μ≡∂T~∂x~μ=∂T~∂xα∂xα∂x~μ=∂T∂xα∂xα∂x~μ=T,α∂xα∂x~μ
\tilde T_{,\mu}\equiv \frac{\partial\tilde T}{\partial \tilde x^\mu}=\frac{\partial \tilde T}{\partial x^\alpha}\frac{\partial x^\alpha}{\partial \tilde x^\mu}=\frac{\partial T}{\partial x^\alpha}\frac{\partial x^\alpha}{\partial \tilde x^\mu}=T_{,\alpha}\frac{\partial x^\alpha}{\partial \tilde x^\mu}
T~,μ≡∂x~μ∂T~=∂xα∂T~∂x~μ∂xα=∂xα∂T∂x~μ∂xα=T,α∂x~μ∂xα
因此T,αT_{,\alpha}T,α是(0,1)(0,1)(0,1)阶张量,将其记作:
T;μ≡T,μ
T_{;\mu}\equiv T_{,\mu}
T;μ≡T,μ
即标量的协变微商就是其普通微商
协变矢量的协变微分
协变矢量微分后不是张量:
∂Tμ∂xν→∂T~μ∂x~ν=∂2xα∂x~μ∂x~νTα+∂xα∂x~μ∂xβ∂x~ν∂Tα∂xβ
\frac{\partial T_\mu}{\partial x^\nu}\rightarrow \frac{\partial \tilde T_\mu}{\partial \tilde x^\nu}=\frac{\partial^2 x^\alpha}{\partial\tilde x^\mu\partial \tilde x^\nu}T_\alpha+\frac{\partial x^\alpha}{\partial \tilde x^\mu}\frac{\partial x^\beta}{\partial \tilde x^\nu}\frac{\partial T_\alpha}{\partial x^\beta}
∂xν∂Tμ→∂x~ν∂T~μ=∂x~μ∂x~ν∂2xαTα+∂x~μ∂xα∂x~ν∂xβ∂xβ∂Tα
上式中,右侧的第一项就不是张量
按原有的定义:
Tμ,ν≡limQ→PTμ(Q)−Tμ(P)Δxν
T_{\mu,\nu}\equiv \lim\limits_{Q\rightarrow P}\frac{T_\mu(Q)-T_\mu(P)}{\Delta x^\nu}
Tμ,ν≡Q→PlimΔxνTμ(Q)−Tμ(P)
Tμ(P)T_\mu(P)Tμ(P)不是张量。为了让微商后仍然是张量,定义“协变微商”:
Tμ;ν≡limQ→PTμ(Q)−Tμ(P→Q)Δxν
T_{\mu;\nu}\equiv\lim\limits_{Q\rightarrow P}\frac{T_\mu(Q)-T_\mu(P\rightarrow Q)}{\Delta x^\nu}
Tμ;ν≡Q→PlimΔxνTμ(Q)−Tμ(P→Q)
在该定义中,分子是张量,分母(dxμdx^\mudxμ)也是张量,根据商定理,Tμ;νT_{\mu;\nu}Tμ;ν也是张量:
Tμ;ν≡limQ→PTμ(Q)−Tμ(P→Q)Δxν=limQ→P(Tμ(Q)−Tμ(P)Δxν+Tμ(P)−Tμ(P→Q)Δxν)=Tμ,ν−ΓμνλTλ
\begin{aligned}
T_{\mu;\nu}&\equiv \lim\limits_{Q\rightarrow P}\frac{T_\mu(Q)-T_\mu(P\rightarrow Q)}{\Delta x^\nu}\\
&=\lim\limits_{Q\rightarrow P}\left(\frac{T_\mu(Q)-T_\mu(P)}{\Delta x^\nu}+\frac{T_\mu(P)-T_\mu(P\rightarrow Q)}{\Delta x^\nu}\right)\\
&=T_{\mu,\nu}-\Gamma^\lambda_{\mu\nu}T_\lambda
\end{aligned}
Tμ;ν≡Q→PlimΔxνTμ(Q)−Tμ(P→Q)=Q→Plim(ΔxνTμ(Q)−Tμ(P)+ΔxνTμ(P)−Tμ(P→Q))=Tμ,ν−ΓμνλTλ
即:
Tμ;ν=Tμ,ν−ΓμνλTλ
T_{\mu;\nu}=T_{\mu,\nu}-\Gamma^\lambda_{\mu\nu}T_\lambda
Tμ;ν=Tμ,ν−ΓμνλTλ
乘法规则
规定协变微商满足乘法规则:
(A⋯⋯B⋯⋯ );λ=(A⋯ ;λ⋯)B⋯⋯+A⋯⋯(B⋯ ;λ⋯)
(A^\cdots_\cdots B^\cdots_\cdots)_{;\lambda}=(A^\cdots_{\cdots;\lambda})B^\cdots_\cdots+A^\cdots_\cdots(B^\cdots_{\cdots ;\lambda})
(A⋯⋯B⋯⋯);λ=(A⋯;λ⋯)B⋯⋯+A⋯⋯(B⋯;λ⋯)
任意阶张量的协变微商公式
利用上面得出的结论,可以推导出任意阶张量的协变微商公式,例如:
A;λμ=A,λμ+ΓαλμAαTν;λμ=Tν,λμ+ΓρλμTνρ−ΓνλρTρμT;λμν=T,λμν+ΓρλμTρν+ΓρλνTμρTμν;λ=Tμν,λ−ΓμλρTρν−ΓνλρTμρ
\begin{aligned}
A^\mu_{;\lambda}&=A^\mu_{,\lambda}+\Gamma^\mu_{\alpha\lambda}A^\alpha\\
T^\mu_{\nu;\lambda}&=T^\mu_{\nu,\lambda}+\Gamma^\mu_{\rho\lambda}T^\rho_\nu-\Gamma^\rho_{\nu\lambda}T^\mu_\rho\\
T^{\mu\nu}_{;\lambda}&=T^{\mu\nu}_{,\lambda}+\Gamma^\mu_{\rho\lambda}T^{\rho\nu}+\Gamma^\nu_{\rho\lambda}T^{\mu\rho}\\
T_{\mu\nu;\lambda}&=T_{\mu\nu,\lambda}-\Gamma^\rho_{\mu\lambda}T_{\rho\nu}-\Gamma^\rho_{\nu\lambda}T_{\mu\rho}
\end{aligned}
A;λμTν;λμT;λμνTμν;λ=A,λμ+ΓαλμAα=Tν,λμ+ΓρλμTνρ−ΓνλρTρμ=T,λμν+ΓρλμTρν+ΓρλνTμρ=Tμν,λ−ΓμλρTρν−ΓνλρTμρ
在进行微商时,每一个上指标都按照逆变张量的微商那样操作一次,而每一个下指标则按照协变张量的微商那样操作一次