每天一篇论文 294/365 Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulato

Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators

摘要

柔性机械臂的动态控制是一个有待深入研究和分析的问题。目前大多数软机器人的应用都是基于关节空间的运动学模型或线性度,利用静态或准动态控制器。然而,这样的方法并没有真正地利用软体系统的丰富动力。本文提出了一种基于模型的软机械臂闭环预测控制策略学习算法。前向动力学模型用递归神经网络表示。利用轨迹优化和有监督学习方法,推导了闭环控制策略。该方法首先在一个模拟的索驱动欠驱动柔性机械臂分段恒应变模型上得到验证。此外,我们在一个软气动机械手上进行了实验,证明了如何导出能够适应变频控制和未建模外部负载的闭环控制策略。

柔性机械臂模型

机械手是圆柱形的,每个部分有三个径向对称的气动室(见图2)。远端部分保持被动。因此,机械手在近端模块中只有三个主动致动器。
采用气动驱动进行实验的主要原因是我们可以用一个简单的低压控制器直接控制作用在机械手上的力。另一方面,钢筋束需要额外的张力测量传感器和更复杂的低级控制器。在模拟中,我们不受此限制。
电子比例微调节器系列K8P压力调节器用于腔室压力的低电平闭环控制。Vicon跟踪系统用于跟踪沿着操纵器连接的五个标记(见图2)。这些标记位置和速度是用于开发正向模型和控制策略的唯一状态信息。事实上,动态模型的良好近似可以从远端标记来发展。有关静态和动态情况下维康系统跟踪精度的详细信息,请参阅[30]。
在这里插入图片描述

在这里插入图片描述

方法

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

发布了131 篇原创文章 · 获赞 10 · 访问量 7673
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览