import datetime
import pandas as pd
import backtrader as bt
from datetime import datetime
import matplotlib
import akshare as ak
%matplotlib inline
class SmaCross(bt.Strategy):
# 全局设定交易策略的参数
params = (('pfast', 5), ('pslow', 20),)
def __init__(self):
sma1 = bt.ind.SMA(period=self.p.pfast) # fast moving average
sma2 = bt.ind.SMA(period=self.p.pslow) # slow moving average
self.crossover = bt.ind.CrossOver(sma1, sma2) # crossover signal
def next(self):
if self.crossover > 0: # if fast crosses slow to the upside
self.close()
print(self.position)
self.buy(size=1500) # enter long
print("Buy {} shares".format( self.data.close[0]))
print(self.position)
elif self.crossover < 0: # in the market & cross to the downside
self.close()# close long position
print(self.position)
self.sell(size=1500)
print("Sale {} shares".format(self.data.close[0]))
print(self.position)
def bt1():
# 利用 AKShare 获取股票的后复权数据,这里只获取前 6 列
stock_hfq_df = ak.stock_zh_a_hist(symbol="000001", adjust="hfq").iloc[:, :6]
# 处理字段命名,以符合 Backtrader 的要求
stock_hfq_df.columns = [
'date',
'open',
'close',
'high',
'low',
'volume',
]
# 把 date 作为日期索引,以符合 Backtrader 的要求
stock_hfq_df.index = pd.to_datetime(stock_hfq_df['date'])
start_date = datetime(1991, 4, 3) # 回测开始时间
end_date = datetime(2022, 6, 16) # 回测结束时间
data = bt.feeds.PandasData(dataname=stock_hfq_df,
fromdate=start_date,
todate=end_date) # 加载数据
# 初始化cerebro回测系统设置
cerebro = bt.Cerebro()
# 将数据传入回测系统
cerebro.adddata(data)
# 将交易策略加载到回测系统中
cerebro.addstrategy(SmaCross)
# 设置初始资本为10,000
startcash = 10000
cerebro.broker.setcash(startcash)
# 设置交易手续费为 0.1%
cerebro.broker.setcommission(commission=0.001)
# 运行回测系统
cerebro.run()
# 获取回测结束后的总资金
portvalue = cerebro.broker.getvalue()
pnl = portvalue - startcash
print(f'净收益: {round(pnl,2)}')
# 打印结果
print(f'总资金: {round(portvalue,2)}')
cerebro.plot(style='candlestick')
if __name__ == '__main__':
bt1()
akshare sma策略
最新推荐文章于 2024-10-18 15:49:09 发布