如何根据物质的化学分子式计算有效原子序数

根据化学分子式计算有效原子序数(以PMMA C₅H₈O₂为例)

1. 分解化学式,确定各元素的原子数目

• PMMA分子式:C₅H₈O₂
每个分子包含:
• 碳(C):5个原子
• 氢(H):8个原子
• 氧(O):2个原子

2. 确定原子序数(Z)

• C: ( Z = 6 )
• H: ( Z = 1 )
• O: ( Z = 8 )

3. 设定经验指数 ( n = 3.5 )

公式:
在这里插入图片描述
其中 ( n+1 = 4.5 )。

4. 计算分子和分母

• 分子:
在这里插入图片描述
分母
在这里插入图片描述

5. 计算有效原子序数

在这里插入图片描述

6. 结果验证

与论文中的计算结果一致。
在这里插入图片描述

关键说明

密度无关性:公式中 ( e_i ) 是分子中各元素的原子数目比例,与密度无关。密度仅用于计算单位体积内的原子总数,但在分子和分母中比例相同,最终结果不变。
应用场景:该方法适用于纯物质或固定比例的混合物。若计算混合物(如溶液),需结合浓度调整各元素的 ei。

计算3% NaCl溶液的有效原子序数详细步骤

1. 确定溶液成分与质量比例

在这里插入图片描述

2. 计算各元素的质量

在这里插入图片描述

3. 转换为摩尔数

在这里插入图片描述

4. 有效原子序数公式

在这里插入图片描述

5. 分子计算

在这里插入图片描述

6. 分母计算((\sum e_i Z_i))

在这里插入图片描述
在这里插入图片描述

% 计算3% NaCl溶液的有效原子序数(Z_eff)
clc; clear; close all;

%% -------------------- 输入参数 --------------------
% 溶液参数
totalMass = 100;        % 溶液总质量(g)
NaCl_percent = 0.03;    % NaCl质量百分比(3%)
H2O_percent  = 0.97;    % H2O质量百分比(97%)

% 元素原子序数(Z)和摩尔质量(g/mol)
Z_Na = 11;  M_Na = 22.99;    % 钠
Z_Cl = 17;  M_Cl = 35.45;    % 氯
Z_H  = 1;   M_H  = 1.008;    % 氢
Z_O  = 8;   M_O  = 16.00;    % 氧

n = 3.5;    % 经验指数(Mayneord公式)

%% -------------------- 质量分解 --------------------
% NaCl和H2O的总质量
mass_NaCl = totalMass * NaCl_percent; % 3g
mass_H2O  = totalMass * H2O_percent;   % 97g

% 分解NaCl中的Na和Cl质量
frac_Na = M_Na / (M_Na + M_Cl);   % Na在NaCl中的质量分数
mass_Na = mass_NaCl * frac_Na;    % ≈1.18g
mass_Cl = mass_NaCl - mass_Na;    % ≈1.82g

% 分解H2O中的H和O质量
M_H2O = 2*M_H + M_O;              % H2O的摩尔质量
frac_H = (2*M_H) / M_H2O;         % H在H2O中的质量分数
mass_H = mass_H2O * frac_H;       % ≈10.85g
mass_O = mass_H2O - mass_H;      % ≈86.15g

%% -------------------- 摩尔数计算 --------------------
moles_Na = mass_Na / M_Na;    % ≈0.0513 mol
moles_Cl = mass_Cl / M_Cl;    % ≈0.0513 mol
moles_H  = mass_H  / M_H;     % ≈10.76 mol
moles_O  = mass_O  / M_O;     % ≈5.38 mol

% 显示质量与摩尔数
disp('========== 质量与摩尔数 ==========');
fprintf('Na: %.2f g  → %.4f mol\n', mass_Na, moles_Na);
fprintf('Cl: %.2f g  → %.4f mol\n', mass_Cl, moles_Cl);
fprintf('H : %.2f g  → %.2f mol\n', mass_H, moles_H);
fprintf('O : %.2f g  → %.2f mol\n', mass_O, moles_O);

%% -------------------- 有效原子序数计算 --------------------
% 分子:Σ(e_i * Z_i^(n+1))
numerator = ...
    moles_Na * Z_Na^(n+1) + ...    % Na贡献
    moles_Cl * Z_Cl^(n+1) + ...    % Cl贡献
    moles_H  * Z_H^(n+1)  + ...    % H贡献
    moles_O  * Z_O^(n+1);          % O贡献

% 分母:Σ(e_i * Z_i)
denominator = ...
    moles_Na * Z_Na + ...
    moles_Cl * Z_Cl + ...
    moles_H  * Z_H  + ...
    moles_O  * Z_O;

% Z_eff公式
Z_eff = (numerator / denominator)^(1/n);

%% -------------------- 结果输出 --------------------
disp('========== 计算结果 ==========');
fprintf('分子 = %.1f\n', numerator);
fprintf('分母 = %.2f\n', denominator);
fprintf('Z_eff = %.2f\n', Z_eff);

% 验证:与氧(Z=8)对比
disp('----------------------------------');
fprintf('结果接近氧的原子序数(Z=8),因溶液中水占比97%%,氧贡献主导。\n');
“华为杯”第十八届中国研究生数学建模竞赛是一项全国性赛事,致力于提升研究生的数学建模与创新实践能力。数学建模是将实际问题转化为数学模型,并运用数学方法求解以解决实际问题的科学方法。该竞赛为参赛者提供了展示学术水平和团队协作精神的平台。 论文模板通常包含以下内容:封面需涵盖比赛名称、学校参赛队号、队员姓名以及“华为杯”和中国研究生创新实践系列大赛的标志;摘要部分应简洁明了地概括研究工作,包括研究问题、方法、主要结果和结论,使读者无需阅读全文即可了解核心内容;目录则列出各章节标题,便于读者快速查找;问题重述部分需详细重新阐述比赛中的实际问题,涵盖背景、原因及重要性;问题分析部分要深入探讨每个问题的内在联系与解决思路,分析各个子问题的特点、难点及可能的解决方案;模型假设与符号说明部分需列出合理假设以简化问题,并清晰定义模型中的变量和符号;模型建立与求解部分是核心,详细阐述将实际问题转化为数学模型的过程,以及采用的数学工具和求解步骤;结果验证与讨论部分展示模型求解结果,评估模型的有效性和局限性,并对结果进行解释;结论部分总结研究工作,强调模型的意义和对未来研究的建议;参考文献部分列出引用文献,遵循规范格式。 在准备竞赛论文时,参赛者需注重逻辑清晰、论述严谨,确保模型科学实用。良好的团队协作和时间管理也是成功的关键。通过竞赛,研究生们不仅锻炼了数学应用能力,还提升了团队合作、问题解决和科研写作能力。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值