根据化学分子式计算有效原子序数(以PMMA C₅H₈O₂为例)
1. 分解化学式,确定各元素的原子数目
• PMMA分子式:C₅H₈O₂
每个分子包含:
• 碳(C):5个原子
• 氢(H):8个原子
• 氧(O):2个原子
2. 确定原子序数(Z)
• C: ( Z = 6 )
• H: ( Z = 1 )
• O: ( Z = 8 )
3. 设定经验指数 ( n = 3.5 )
公式:
其中 ( n+1 = 4.5 )。
4. 计算分子和分母
• 分子:
• 分母:
5. 计算有效原子序数
6. 结果验证
与论文中的计算结果一致。
关键说明
• 密度无关性:公式中 ( e_i ) 是分子中各元素的原子数目比例,与密度无关。密度仅用于计算单位体积内的原子总数,但在分子和分母中比例相同,最终结果不变。
• 应用场景:该方法适用于纯物质或固定比例的混合物。若计算混合物(如溶液),需结合浓度调整各元素的 ei。
计算3% NaCl溶液的有效原子序数详细步骤
1. 确定溶液成分与质量比例
2. 计算各元素的质量
3. 转换为摩尔数
4. 有效原子序数公式
5. 分子计算
6. 分母计算((\sum e_i Z_i))
% 计算3% NaCl溶液的有效原子序数(Z_eff)
clc; clear; close all;
%% -------------------- 输入参数 --------------------
% 溶液参数
totalMass = 100; % 溶液总质量(g)
NaCl_percent = 0.03; % NaCl质量百分比(3%)
H2O_percent = 0.97; % H2O质量百分比(97%)
% 元素原子序数(Z)和摩尔质量(g/mol)
Z_Na = 11; M_Na = 22.99; % 钠
Z_Cl = 17; M_Cl = 35.45; % 氯
Z_H = 1; M_H = 1.008; % 氢
Z_O = 8; M_O = 16.00; % 氧
n = 3.5; % 经验指数(Mayneord公式)
%% -------------------- 质量分解 --------------------
% NaCl和H2O的总质量
mass_NaCl = totalMass * NaCl_percent; % 3g
mass_H2O = totalMass * H2O_percent; % 97g
% 分解NaCl中的Na和Cl质量
frac_Na = M_Na / (M_Na + M_Cl); % Na在NaCl中的质量分数
mass_Na = mass_NaCl * frac_Na; % ≈1.18g
mass_Cl = mass_NaCl - mass_Na; % ≈1.82g
% 分解H2O中的H和O质量
M_H2O = 2*M_H + M_O; % H2O的摩尔质量
frac_H = (2*M_H) / M_H2O; % H在H2O中的质量分数
mass_H = mass_H2O * frac_H; % ≈10.85g
mass_O = mass_H2O - mass_H; % ≈86.15g
%% -------------------- 摩尔数计算 --------------------
moles_Na = mass_Na / M_Na; % ≈0.0513 mol
moles_Cl = mass_Cl / M_Cl; % ≈0.0513 mol
moles_H = mass_H / M_H; % ≈10.76 mol
moles_O = mass_O / M_O; % ≈5.38 mol
% 显示质量与摩尔数
disp('========== 质量与摩尔数 ==========');
fprintf('Na: %.2f g → %.4f mol\n', mass_Na, moles_Na);
fprintf('Cl: %.2f g → %.4f mol\n', mass_Cl, moles_Cl);
fprintf('H : %.2f g → %.2f mol\n', mass_H, moles_H);
fprintf('O : %.2f g → %.2f mol\n', mass_O, moles_O);
%% -------------------- 有效原子序数计算 --------------------
% 分子:Σ(e_i * Z_i^(n+1))
numerator = ...
moles_Na * Z_Na^(n+1) + ... % Na贡献
moles_Cl * Z_Cl^(n+1) + ... % Cl贡献
moles_H * Z_H^(n+1) + ... % H贡献
moles_O * Z_O^(n+1); % O贡献
% 分母:Σ(e_i * Z_i)
denominator = ...
moles_Na * Z_Na + ...
moles_Cl * Z_Cl + ...
moles_H * Z_H + ...
moles_O * Z_O;
% Z_eff公式
Z_eff = (numerator / denominator)^(1/n);
%% -------------------- 结果输出 --------------------
disp('========== 计算结果 ==========');
fprintf('分子 = %.1f\n', numerator);
fprintf('分母 = %.2f\n', denominator);
fprintf('Z_eff = %.2f\n', Z_eff);
% 验证:与氧(Z=8)对比
disp('----------------------------------');
fprintf('结果接近氧的原子序数(Z=8),因溶液中水占比97%%,氧贡献主导。\n');