注意力机制(二)

本文详细介绍了Transformer模型的架构,包括其使用的位置编码、自注意力机制和多头注意力机制。Transformer通过编码器和解码器的多层结构处理序列数据,特别是在机器翻译任务中表现优秀。文章还解释了缩放点积注意力的计算过程,并讨论了残差连接和归一化在克服深度学习问题中的作用。
摘要由CSDN通过智能技术生成

上两篇文章中,我们介绍了循环神经网络经典的应用结构自编码模型,以及其应对长序列问题的改进模型——带注意力机制的自编码模型。其本质都是通过一个Encoder和一个Decoder实现机器翻译、文本转换、机器问答等功能。

3c4703e2205f9428b1103501576e24bc.png

传送门:序列处理之RNN模型注意力机制(一)

里面的网络结构通常是循环网络或卷积网络。今天我们学习另外一种网络结构,用6个结构相同的Encoder串联构成编码层,用6个结构相同的Decoder串联构成解码层,这种自编码模型称为Transformer.

eea3e34e66b010c24392394f8db78b76.png

a83ed72785753bcc1915574e90c8467b.gif

Transformer架构

2e87f7ebde876a020d37fe0d3269fb7f.png

Transformer的架构一般如下图所示:

f1a3747cde8b384a212a5dba906a9466.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

整得咔咔响

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值