蛋白质结构预测评价指标pLDDT和lDDT-Cα介绍及计算公式

pLDDT 和 lDDT-Cα 是两种广泛用于评价蛋白质结构预测准确性的指标。它们用于不同层次的评估,一个衡量局部结构预测的质量,另一个衡量全局结构的准确性。下面详细介绍这两个指标及其计算公式。

1. pLDDT (Predicted Local Distance Difference Test)

pLDDT 的定义和作用
  • pLDDT 是由 AlphaFold 等蛋白质结构预测模型提出的一种局部质量预测分数,用于估计单个残基的预测精度。它用于评估某个残基的局部几何结构(即残基与其周围残基之间的相对位置)的预测可靠性。
  • 该分数通常在 0 到 100 之间,数值越高表示模型对该残基的预测越有信心:
    • 90-100:高精度区域
    • 70-90:可信区域
    • 50-70:低精度区域
    • <50:错误区域
pLDDT 的计算

pLDDT 分数由深度学习模型预测出,不依赖于实际参考结构。其计算通常由神经网络通过训练数据自动得出,因此没有明确的公式。模型根据残基局部几何关系(如残基对之间的距离、角度等)得出每个残基的置信度。

应用

pLDDT 主要用于评估每个残基的预测质量,帮助判断蛋白质结构模型中哪些区域是可靠的,哪些区域不可信。

2. lDDT-Cα (Local Distance Diffe

### AlphaFold 预测结果的置信度信息及其解释 AlphaFold 的预测结果提供了两种主要方式来评估其预测的质量可靠性: #### 1. pLDDT (Predicted LDDT) pLDDT 是一种用于衡量单个残基位置上模型预测可靠性的指标。该分数范围从 0 到 100,数值越高表示对该位置氨基酸坐标的预测越有信心。通常情况下,当 pLDDT 值大于 90 时,可以认为预测非常可信;而低于 50 的值则表明预测可能不可靠[^1]。 对于整个蛋白质链而言,还可以计算平均 pLDDT 分数作为整体模型质量的一个指示器。这有助于快速判断哪些区域具有较高的预测准确性以及哪些部分可能存在较大不确定性。 #### 2. PAE (Predicted Aligned Error) 除了提供每一对残基之间的距离误差估计外,PAE 还能展示不同片段间相对排列关系的信心水平。具体来说,较低的 PAE 数值意味着两个特定残基之间的真实空间距离很可能接近于所给出的最佳匹配路径上的对应距离;相反,高 PAE 表明这种配对存在较大的几何偏差风险[^2]。 通过可视化工具查看这些数据可以帮助研究人员更直观地理解预测结构中的不确定性潜在错误源。例如,在 Jupyter Notebook 或其他支持图形渲染的应用程序中加载 AlphaFold 结果文件后,即可生成相应的热图或三维视图来进行深入分析。 ```python import matplotlib.pyplot as plt from alphafold.common import protein from alphafold.model import utils # 加载 AlphaFold 输出的数据 result = utils.get_model_confidence(pdb_file='example.pdb') # 绘制 pLDDT 曲线 plt.figure(figsize=(8, 6)) plt.plot(result['plddt']) plt.title('Per-residue Predicted Alignment Error') plt.xlabel('Residue Index') plt.ylabel('pLDDT Score') plt.show() # 显示 PAE 热图 plt.matshow(result['pae'], cmap='viridis', vmin=0, vmax=max_pae) plt.colorbar(label='Predicted aligned error (Å)') plt.title('Predicted Aligned Error Heatmap') plt.xlabel('Scored residue') plt.ylabel('Aligned residue') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值