pLDDT 和 lDDT-Cα 是两种广泛用于评价蛋白质结构预测准确性的指标。它们用于不同层次的评估,一个衡量局部结构预测的质量,另一个衡量全局结构的准确性。下面详细介绍这两个指标及其计算公式。
1. pLDDT (Predicted Local Distance Difference Test)
pLDDT 的定义和作用
- pLDDT 是由 AlphaFold 等蛋白质结构预测模型提出的一种局部质量预测分数,用于估计单个残基的预测精度。它用于评估某个残基的局部几何结构(即残基与其周围残基之间的相对位置)的预测可靠性。
- 该分数通常在 0 到 100 之间,数值越高表示模型对该残基的预测越有信心:
- 90-100:高精度区域
- 70-90:可信区域
- 50-70:低精度区域
- <50:错误区域
pLDDT 的计算
pLDDT 分数由深度学习模型预测出,不依赖于实际参考结构。其计算通常由神经网络通过训练数据自动得出,因此没有明确的公式。模型根据残基局部几何关系(如残基对之间的距离、角度等)得出每个残基的置信度。
应用
pLDDT 主要用于评估每个残基的预测质量,帮助判断蛋白质结构模型中哪些区域是可靠的,哪些区域不可信。