第9章 欧几里得空间

一、

线性空间V上定义内积运算(\alpha ,\beta ),有以下性质:

1.(\alpha ,\beta )=(\beta ,\alpha )

2.(k\alpha ,\beta )=k(\alpha ,\beta )

3.(\alpha+\beta ,\gamma )=(\alpha ,\gamma )+(\beta ,\gamma )

4.(\alpha , \alpha)\geqslant 0,当且仅当\alpha=0时,(\alpha ,\alpha)=0

这样的线性空间为欧几里得空间,简称欧式空间。

若n维欧式空间一组基为\xi _{1},\xi _{2},...\xi _{n},则任意的两个变量\alpha,\beta有:

\alpha =x_{1}\xi _{1}+x_{2}\xi _{2}...+x_{n}\xi _{n}\beta =y_{1}\xi _{1}+y_{2}\xi _{2}...+y_{n}\xi _{n}

(\alpha ,\beta )=\sum_{i=1}^{n}\sum_{j=1}^{n}(\xi _{i},\xi _{j})x_{i}y_{j}=(x_{1},...x_{n})\begin{pmatrix} (\xi _{1},\xi _{1})& ... & (\xi _{1},\xi _{n}) \\ ... & (\xi _{i},\xi _{j}) & ... \\ (\xi _{n},\xi _{1}) & ... & (\xi _{n},\xi _{n}) \end{pmatrix}\begin{pmatrix} y_{1}\\ ...\\ y_{n} \end{pmatrix}

\begin{pmatrix} (\xi _{1},\xi _{1})& ... & (\xi _{1},\xi _{n}) \\ ... & (\xi _{i},\xi _{j}) & ... \\ (\xi _{n},\xi _{1}) & ... & (\xi _{n},\xi _{n}) \end{pmatrix}是基 \xi _{1},\xi _{2},...\xi _{n}的度量矩阵,记为A。当\alpha=\beta时,内积运算就是一个二次型,(\alpha , \alpha)\geqslant 0,所以A正定,合同于单位矩阵。

度量矩阵对称,可逆的对称矩阵相乘还是对称的。所以选择另外一组基\eta _{1},\eta _{2},...\eta _{n},则从\xi _{1},\xi _{2},...\xi _{n}\eta _{1},\eta _{2},...\eta _{n}的过渡矩阵C还是对称。\eta _{1},\eta _{2},...\eta _{n}的度量矩阵B=C^{T}AC

二、正交变换

(Aa, Ab) = (a, b)

向量正交则线性无关

(实)对称矩阵的相似,对角化,正定,特征值等性质的部分汇总及证明 - 知乎

三、对称变换

(Aa, b) = (a, Ab) 

四、实对称矩阵存在正交阵,使其对角化

实对称矩阵特征值都是实数

一组基可以通过施密特正交化成为一组标准正交基,所以求一个子空间的正交补,就是将子空间的正交基扩充为V的一组基,然后标准正交化,则得到正交补,且正交补唯一

矩阵相似于上三角,且上三角中的对角线上的值全部是特征值。

 实对称矩阵满足R(A)=R(AA')=R(AA):

 

几何重数=代数重数,所以实对称矩阵有n个线性无关特征向量。 即可对角化。

不同特征值的特征向量正交。

由于特征值对应的子空间中,子空间的基向量进行线性组合还是矩阵或者线性变换的特征向量,所以将该特征子空间的基向量进行施密特正交化转为标准正交基,然后和其他特征值的子空间基向量进行组合,他们两两正交且都是特征值、向量,他们组成一个正交矩阵T,满足T'AT等于标准型

例题:

1. 正交补证明

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

heine162

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值