第九章
欧几里得空间
§ 1 定义与基本性质
在线性空间中,向量之间的基本运算只有加法与数量乘法,统称为线性运算.
如果我们以几何空间中的向量作为线性空间理论的一个具体模型,那么就会发现向量的度量性质,如长度、夹角等,在线性空间的理论中没有得到反映.但是向量的度量性质在许多问题中
(其中包括几何问题) 有着特殊的地位,因此有必要引人度量的概念.
在解析几何中我们看到,
向量的长度与夹角等度量性质都可以通过向量的内积来表示,
而且向量的内积有明显的代数性质.
所以在抽象的讨论中,我们取内积作为基本的概念.
定义 1 设 V V V 是实数域 R R R 上一线性空间,在 V V V
上定义了一个二元实函数,称为内积, 记作
( α , β ) (\boldsymbol{\alpha}, \boldsymbol{\beta}) (α,β). 它具有以下性质:
1)
( α , β ) = ( β , α ) (\boldsymbol{\alpha}, \boldsymbol{\beta})=(\boldsymbol{\beta}, \boldsymbol{\alpha}) (α,β)=(β,α);
2)
( k α , β ) = k ( α , β ) (k \boldsymbol{\alpha}, \boldsymbol{\beta})=k(\boldsymbol{\alpha}, \boldsymbol{\beta}) (kα,β)=k(α,β);
3)
( α + β , γ ) = ( α , γ ) + ( β , γ ) (\boldsymbol{\alpha}+\boldsymbol{\beta}, \boldsymbol{\gamma})=(\boldsymbol{\alpha}, \boldsymbol{\gamma})+(\boldsymbol{\beta}, \boldsymbol{\gamma}) (α+β,γ)=(α,γ)+(β,γ);
4) ( α , α ) ⩾ 0 (\boldsymbol{\alpha}, \boldsymbol{\alpha}) \geqslant 0 (α,α)⩾0, 当且仅当
α = 0 \boldsymbol{\alpha}=\mathbf{0} α=0 时,
( α , α ) = 0 (\boldsymbol{\alpha}, \boldsymbol{\alpha})=0 (α,α)=0,
其中 α , β , γ \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} α,β,γ 是
V V V 中任意的向量, k k k 是任意实数. 这样的线性空间 V V V 称为欧几里得空间.
在欧几里得空间的定义中,对它作为线性空间的维数并无要求,
可以是有限维的,也可以是无限维的.
几何空间中向量的内积显然适合定义中列举的性质,所以几何空间中向量的全体构成一个欧几里得空间.
下面再看两个例子.
例 1 在线性空间 R n \mathbf{R}^{n} Rn 中, 对于向量
α = ( a 1 , a 2 , ⋯ , a n ) , β = ( b 1 , b 2 , ⋯ , b n ) . \boldsymbol{\alpha}=\left(a_{1}, a_{2}, \cdots, a_{n}\right), \quad \boldsymbol{\beta}=\left(b_{1}, b_{2}, \cdots, b_{n}\right) . α=(a1,a2,⋯,an),β=(b1,b2,⋯,bn).
定义内积
( α , β ) = a 1 b 1 + a 2 b 2 + ⋯ + a n b n . (\boldsymbol{\alpha}, \boldsymbol{\beta})=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} . (α,β)=a1b1+a2b2+⋯+anbn.
显然, 内积 (1) 适合定义中的条件, 这样, R n \mathbf{R}^{n} Rn
就成为一个欧几里得空间. 以后仍用 R n \mathbf{R}^{n} Rn
来表示这个欧几里得空间.
在 n = 3 n=3 n=3 时, (1) 式就是几何空间中向量的内积在直角坐标系中的坐标表达式.
例 2 在闭区间 [ a , b ] [a, b] [a,b] 上的所有实连续函数所成的空间 C ( a , b ) C(a, b) C(a,b) 中,
对于函数 f ( x ) f(x) f(x), g ( x ) g(x) g(x), 定义内积
( f , g ) = ∫ a b f ( x ) g ( x ) d x . (f, g)=\int_{a}^{b} f(x) g(x) \mathrm{d} x . (f,g)=∫abf(x)g(x)dx.
由定积分的性质不难证明,对于内积 (2), C ( a , b ) C(a, b) C(a,b) 构成一欧几里得空间。
同样地,线性空间 R [ x ] , R [ x ] n \mathbf{R}[x], \mathbf{R}[x]_{n} R[x],R[x]n 对于内积 (2)
也构成欧几里得空间.
下面来看欧几里得空间的一些基本性质.
首先,定义中条件 1) 表明内积是对称的.因此,与 2),3) 相当地就有
2 ′ ) ( α , k β ) = ( k β , α ) = k ( β , α ) = k ( α , β ) \left.2^{\prime}\right)(\boldsymbol{\alpha}, k \boldsymbol{\beta})=(k \boldsymbol{\beta}, \boldsymbol{\alpha})=k(\boldsymbol{\beta}, \boldsymbol{\alpha})=k(\boldsymbol{\alpha}, \boldsymbol{\beta}) 2′)(α,kβ)=(kβ,α)=k(β,α)=k(α,β);
3 ′ ) ( α , β + γ ) = ( β + γ , α ) = ( β , α ) + ( γ , α ) = ( α , β ) + ( α , γ ) \left.3^{\prime}\right)(\boldsymbol{\alpha}, \boldsymbol{\beta}+\gamma)=(\boldsymbol{\beta}+\gamma, \boldsymbol{\alpha})=(\boldsymbol{\beta}, \boldsymbol{\alpha})+(\boldsymbol{\gamma}, \boldsymbol{\alpha})=(\boldsymbol{\alpha}, \boldsymbol{\beta})+(\boldsymbol{\alpha}, \boldsymbol{\gamma}) 3′)(α,β+γ)=(β+γ,α)=(β,α)+(γ,α)=(α,β)+(α,γ).
由条件 4), 有 ( α , α ) ⩾ 0 (\alpha, \alpha) \geqslant 0 (α,α)⩾0. 所以对于任意的向量
α , ( α , α ) \alpha, \sqrt{(\alpha, \alpha)} α,(α,α) 是有意义的.在几何空间中,向量
α \boldsymbol{\alpha} α 的长度为
( α , α ) \sqrt{(\boldsymbol{\alpha}, \boldsymbol{\alpha})} (α,α). 类似地,
我们在一般的欧几里得空间中引进
定义 2 非负实数 ( α , α ) \sqrt{(\alpha, \alpha)} (α,α) 称为向量 α \alpha α 的长度, 记为
∣ α ∣ |\alpha| ∣α∣.
显然, 向量的长度一般是正数, 只有零向量的长度才是零,
这样定义的长度符合熟知的性质:
∣ k α ∣ = ∣ k ∣ ∣ α ∣ , |k \boldsymbol{\alpha}|=|k||\boldsymbol{\alpha}|, ∣kα∣=∣k∣∣α∣,
其中 k ∈ R , α ∈ V k \in \mathbf{R}, \boldsymbol{\alpha} \in V k∈R,α∈V. 事实上,
∣ k α ∣ = ( k α , k α ) = k 2 ( α , α ) = ∣ k ∣ ∣ α ∣ . |k \alpha|=\sqrt{(k \alpha, k \alpha)}=\sqrt{k^{2}(\alpha, \alpha)}=|k||\alpha| . ∣kα∣=(kα,kα)