目录
案例简介
第一步:确认数据真实性
第二步:明确定义,并拆解指标,进一步定位原异常部分
第三步:根据几个常见维度初步拆分数据
第四步:进一步做假设并细分深入,得出结论
案例分析
例题
GMV下降了20%怎么分析?(GMV=访客数(uv)*订单转化率(cr)*单均价)
总结
例题部分转载自公众号《阿狸与小兔》。
案例简介
一款信息流APP平时日活稳定在79w-80w之间,但是在6月13日起突然掉到了78.8w,到6月15日已经掉到78.5w,这时产品负责人着急了,让你尽快排查一下数据下跌的原因。这样的问题对大多数人来说还是比较头疼的,因为对于80w量级的产品,一两万并不是一个非常大的波动,但原因还是要排查。

核心点:先做数据异常原因的假设,后用数据验证假设。
不建议大家第一步先自己对着数据去拆,影响日活数据的因素很多,不可能把所有维度逐一拆解对比,容易浪费时间却没有任何有价值的发现。做数据异常原因分析的核心就是结合以往经验及各种信息,找出最有可能的原因假设,通过数据的拆分进行多维度分析来验证假设,定位问题所在。过程中可能会在原假设基础上建立新的假设或者是调整原来假设,直到定位原因。
第一步:确认数据真实性
在开始着手分析前,建议先确认数据的真实性。我们经常会遇到数据服务、数据上报、数据统计上的BUG,在数据报表上就会出现异常值。所以,找数据流相关的产品和研发确认下数据的真实性吧。
第二步:明确定义,并拆解指标,进一步定位原异常部分
逻辑树模型的思维,由大到小,一步一步深入。(指出拆解方法的局限性:假设缺陷、分布缺陷、估算保守/激进)
第三步:根据几个常见维度初步拆分数据
可以利用人货场模型来思考,如下图

计算影响系数:每一项数据都要和以往正常值做对比,算出影响系数。
影响系数 =(今日量-昨日量)/(今日总量-昨日总量)
影响系数越大,说明此处就是主要的下降点
以上是几种常见的初步拆分维度