摘要
本文介绍了 MarketSenseAI,这是一个利用 GPT-4 的先进推理来选择金融市场股票的创新框架。通过整合思维链和上下文学习,MarketSenseAI 分析不同的数据源,包括市场趋势、新闻、基本面和宏观经济因素,以模仿专家的投资决策。我们详细讨论了该框架的开发、实现和验证,强调了其生成可操作和可解释的投资信号的能力。这项工作的一个显着特点是采用 GPT-4 作为预测机制和信号评估器,揭示了人工智能生成的解释对信号准确性、可靠性和可接受性的重大影响。通过在 15 个月内对具有竞争力的标准普尔 100 股票进行实证测试,MarketSenseAI 表现出了卓越的表现,实现了 10% 至 30% 的超额阿尔法,在此期间实现了高达 72% 的累积回报,同时保持了可比的风险状况,以应用到更广阔的市场。我们的研究结果凸显了大型语言模型在金融决策中的变革潜力,标志着将生成式人工智能整合到金融分析和投资策略中的重大飞跃。
1.介绍
1.1 Background and motivation
资本市场是经济体内资本配置的有效渠道,其价格发现过程在维护金融体系的健康和稳定方面发挥着关键作用。价格发现过程取决于多种因素的复杂相互作用,包括公司和行业的具体因素、宏观经济数据、动量效应以及政治和地缘政治影响。市场参与者共同参与这一复杂的价格发现机制,从而确保金融市场的有效运作。
选股本质上是一种价格发现机制,市场参与者通过该机制关注被认为“定价错误”的股票,从而提供相对于更广泛市场有吸引力的回报潜力。这一原则构成了价值投资的本质。然而,“错误定价”的概念可以扩展,因为它也可能与市场认为的资产公平价格有关,而这可能不一定与其基本价值一致。这可以包含对公司未来增长的预期,这种策略通常被称为“增长投资”,有时会忽视当前的基本面。除了价值和成长投资领域之外,还有其他因素会影响股票选择并增加股票选择的复杂性。被动投资、资本流动、衍生品相关流动和宏观经济因素的重要性都促成了本质上具有概率性且实质上往往是混乱的金融体系。
市场参与者通过理解和使用广泛的信息来做出决策。然而,散户投资者常常难以分析个股。这一挑战源于他们分析信息的能力有限、容易出现行为偏差以及缺乏强大的风险管理技能。结果,他们可能会错过有前途的投资机会或使自己面临不当的风险。在此背景下,交易所交易基金(ETF)提供了一个实用的解决方案。ETF 使这些投资者能够更有效地参与更广泛的市场,这种方法通常被称为“贝塔投资”。
同样,中小型资产或财富管理公司也面临着自己的一系列挑战。他们可能会因为资源限制或选择范围有限而难以对个股进行深入分析。对于这些公司来说,ETF 也是一个有吸引力的选择,提供了更易于管理和多元化的投资方式。
相比之下,较大的专业公司通常装备精良,拥有先进的技术、基础设施和熟练的人员。这使他们能够对其投资组合进行卓越的分析和风险管理。这些公司通常拥有由股票分析师、经济学家和交易员组成的专门团队,他们的集体知识和推理能力专注于利用潜在的投资机会。然而,即使拥有这些优势,它们跑赢市场的能力也无法得到保证。他们面临着通常与大型组织相关的独特挑战,例如孤岛、沟通不畅和激励措施多样化。
过去 15 年以及 2008 年金融危机之后,资本市场的结构和功能发生了重大变化,对价格发现产生了持久影响。 进一步来说:
- 央行政策:2008 年的危机让市场参与者坚信央行将使用一切可用工具进行干预以稳定市场。过度依赖央行干预可能会扭曲市场机制和激励措施,因为这可能导致风险定价过低,并导致道德风险和系统范围外部性的潜在增加。
- 被动投资的兴起:ETF提供“盲目”参与市场加权指数的机会,对所有参与股票不考虑其基本价值。 这可能导致股票大幅偏离其公允价值。 显然,被动投资者广泛持有的股票比未持有的股票更有可能受到影响。
- 散户投资者的重大影响:散户投资者的出现,可以轻松访问游戏化、杠杆化和衍生品交易平台,也对价格发现产生了重大影响。一个例子是一种非常流行的零售产品,零日到期期权(0DTE),这是一种在一天内到期的期权合约。2022 年,0DTE 约占标准普尔 500 指数期权总成交量的 43%,而 2017 年仅为 6%。另一个例子是迷因股票,例如 GameStop,零售羊群行为将股票价格推至天文水平。
上述因素共同扰乱了价格发现的正常运作,导致投资者准确评估风险和价值资产的动力减弱。在当今的市场环境中,这凸显了对更复杂工具的迫切需求。这些工具不仅应该增强人类决策者的分析能力,还应该增强他们驾驭日益复杂和数据丰富的金融环境的能力。借助这些工具,投资者可以获得精确度和洞察力,这对于在当前市场动态中做出明智的决策至关重要。
1.2 Potential of LLMs in Stock Selection and Financial Analysis
像 ChatGPT 这样的大型语言模型 (LLM) 的出现有望显着增强财务分析和股票选择。这些复杂的人工智能(AI)系统经过大量和多种类型的语料库的训练,不仅证明了复制人类认知复杂方面的能力,而且在许多情况下已经超越了人类认知。
通过快速解析大量财务数据,LLM可以识别从收益报告到宏观经济研究的复杂细节,并比人类分析师更有效地处理大量非结构化数据,例如新闻文章或专家意见。这种快速深入的内容分析使他们能够查明传统分析中经常遗漏的模式。
虽然人类可能会受到认知偏见的影响,但LLM提供了更客观的视角。尽管他们的训练中存在一些偏见,但他们的运作在很大程度上不存在类似的影响人类判断的情感和认知上的偏见。此外,LLM超越了个人或团队分析的限制,可以无缝将这些能力扩展到各种产品、市场以及最重要的投资者。
此外,LLM在最大限度地减少选股偏差方面发挥着至关重要的作用。与人类分析师不同,LLM不受情感或认知偏见的影响,为财务分析提供了更客观的视角。这种客观性对于做出公正的投资决策至关重要,因为LLM依赖于数据驱动的见解而不是主观判断。虽然训练数据中固有的一些偏见可能持续存在,但LLM可以显着减少人为偏见(例如过度自信或确认偏见)对投资决策的影响。此外,LLM可以处理和分析大量财务数据,这超越了个人或团队分析师的限制。
尽管此类人工智能系统可能在某些特定任务中表现优于人类,但其主要价值在于支持人类能力。它们是增强决策、提高分析工作质量并提高整体生产力的强大工具。例如,基于LLM的系统可以简化复杂的任务,例如合并大公司的多个不同子公司的财务报表。后者能够突出显示差异、标记异常值并提供执行摘要,如果手动完成,这项任务既耗时又容易出错。
验证上述观察结果的是,包括摩根大通和彭博社在内的金融领域的知名企业最近推出了人工智能驱动的举措。这些实体分别宣布了人工智能支持的咨询平台和以金融为中心的LLM课程,重申了生成式人工智能在金融领域的重要性。此外,摩根士丹利还利用 OpenAI 的模型开发了一个聊天机器人,通过利用该银行广泛的研究数据来帮助财务顾问。同样,Broadridge 通过其子公司 LTX 推出了 BondGPT,这是一款由 GPT-4 提供支持的聊天机器人,旨在帮助机构投资者进行债券交易。然而,值得注意的是,高盛和贝莱德等许多主要金融机构都设有专门的人工智能部门,致力于专门的计划。尽管如此,出于竞争和专有原因,投资银行领域的此类创新细节往往在这些机构内部受到严密保护,从而限制了有关这些重大发展的全面信息的公开披露。
1.3 Paper Contributions
本文主要通过介绍植根于LLM能力的名为 MarketSenseAI 的股票分析创新服务,为人工智能与金融分析融合的不断发展的讨论做出了几项关键贡献。主要贡献概述如下:
- 一种新的LLM驱动的投资服务:整合各种数据源,提供全面的股票投资见解。
- 可解释的投资信号:可解释的投资见解,以增强投资者的能力并确保透明度。
- 多功能用例:MarketSenseAI 的设计允许单独使用服务组件,满足不同投资者的需求。
- 实证评估:证明服务建议的可靠性和统计意义。
- 卓越表现:凸显其超越高性能指数的潜力。
- 独立财务顾问:让散户投资者、资产管理者和其他利益相关者获得优质的投资见解。
从本质上讲,本文开创了将多源数据分析与LLM的认知能力相结合,以重新定义股票选择和投资组合管理。由此产生的服务不仅提高了股票推荐的质量,而且确保它们得到强有力的、可解释的推理的支持。作为 MarketSenseAI 的核心,LLM从大量数字和文本数据中生成简明摘要,提取有关公司发展和股票潜力的重要见解。随后,对这些摘要进行分析,考虑投资期限,对具体股票提出投资建议。这种双流程方法利用人工智能的总结和分析能力,为投资者应对复杂的股票市场提供了一个复杂的工具。
此外,MarketSenseAI的模块化架构允许金融领域的多样化应用。该架构的每个组件都提供了可以单独利用的具体见解,例如新闻、基本面和宏观经济摘要。它可以利用生成的信号及其解释来促进基于人工智能的投资组合的构建,从而为资产管理提供革命性的方法。该框架可以根据用户对风险、投资期限和目标的偏好进行定制,以做出个性化的投资决策。这种适应性证明了该框架在金融各个领域的潜力,远远超出了选股范围。
总体而言,MarketSenseAI 将领域知识和最新的人工智能进步联系起来,为投资金融提供了一个新颖且适用的系统。对于寻求高级财务建议的资产管理者和散户投资者,尤其是那些资源有限且无法获得优质金融服务的资产管理者和散户投资者来说,该工具具有重大前景。
本文其余部分的结构如下:第 2 节回顾相关工作,特别关注投资金融中的人工智能以及LLM的重要性。第 3 节介绍 MarketSenseAI,详细介绍其架构和关键组件。第 4 节描述了评估方法,涉及所使用的数据和比较方法。第 5 节分享了实证结果。第 6 节总结了本文的主要贡献和见解。
2.相关工作
过去十年,人工智能技术在金融领域的整合经历了显着的激增,日益超越传统的统计或算法方法。金融领域的各个层面都见证了人工智能的注入,包括风险评估、银行服务和交易操作。与此同时,基础模型的崛起,特别是生成式预训练 Transformer (GPT) 及其附属聊天接口的连续迭代,正在影响不同领域的变革。值得注意的是,金融部门越来越多地将此类模型的见解融入其业务运营中。
尽管这些模型相对较新的公众可访问性(例如,ChatGPT API(应用程序编程接口)直到 2023 年 3 月才公开),但大量的研究工作已经浮出水面,阐明了利用这些生成式 AI 框架来增强投资范式的方法 。
Zaremba 和 Demir(2023)提出的研究阐明了 ChatGPT 在金融领域的潜力,特别是对于需要自然语言处理能力的任务,例如金融新闻的情绪分析和总结收益报告。此类任务显示出与股票市场动态的显着相关性。此外,Lopez-Lira 和 Tang (2023) 确立了 ChatGPT 在财经新闻情绪分析中的准确性,强调 ChatGPT 生成的分数与随后的股票回报之间的正相关性。在多种投资策略下,他们发现ChatGPT优于传统的情绪分析方法,这位新闻情绪分析带来了可观的回报。
在比较评估中,Li et al. (2023) 认为 ChatGPT 和 GPT-4 在命名实体识别和新闻分类等多项任务中超越了 FinBERT 和 BloombergGPT 等特定领域模型。值得注意的是,虽然 FinBERT 在金融情绪分析方面表现出优于 ChatGPT 的优势,但该研究缺乏提示工程设计,并且使用了本质上有利于 FinBERT 的数据集。相比之下,Fatouros et al. (2023b) 提供的证据表明,即使在应用零样本提示的情况下,ChatGPT 在金融情绪分析中的分类性能和与实际回报的相关性方面也优于 FinBERT。零样本提示使得 ChatGPT 能够在没有事先特定训练的情况下执行任务,这表明尽管没有明确的财务数据训练,但基于其全面的训练,它可以有效地进行情感分析。
此外,Kim et al. (2023) 提倡使用 GPT-3.5 来总结公司披露信息,表明从这些摘要中得出的情绪比原始文件能够更准确地预测股市反应。这一发现强调了 GPT 为寻求简洁和有针对性的信息的投资者提供的价值。Kirtac and Germano (2024) 扩展了这一分析,证明了 GPT-3.5 在预测次日股票收益的情绪分析中的有效性,同时优于 FinBERT 和基于词典的模型。Yu et al. (2023) and Chen et al. (2023) 进一步探讨了LLM衍生的情绪指标,以及如何使用这些指标来增强股票走势的预测模型,表明LLM在预测股票方向方面的卓越表现。
总之,目前对LLM在金融应用的研究与所提出的系统中每个组件的方法相对齐并强化了该方法。然而,据我们所知,所提出的方法在设计和评估方法上都是独特的,因为它利用多模态财务数据,而不是几乎新闻或历史价格新闻,为分析的股票提供可操作和可解释的投资建议,同时它的表现优于高性能 ETF。与严重依赖定量分析(使用情绪指标作为预测模型的特征)的传统方法不同,MarketSenseAI 强调语言理解和推理,在处理数字和文本数据后生成投资见解。这种方法可以为每项建议提供由人工智能生成的详细解释,从而增强投资决策的可解释性和可信度。此外,评估还考虑了交易成本和交易数量,凸显了 MarketSenseAI 在现实环境中的适用性。
3.方法
MarketSenseAI 的架构框架如图 1 所示,将负责数据输入的四个核心组件与第五个组件合并在一起,以促进最终推荐(即买入、持有或卖出)。该组件综合了所有信息并为相应的决策提供了简洁的解释。每个组件都基于 OpenAI 的 API 构建,并采用 GPT-4 模型,利用零样本提示和上下文学习来执行不同的任务。
该框架旨在模拟专业投资团队的决策过程。此过程包括跟踪公司或其行业的最新发展(通过新闻摘要)、分析公司最新的财务报表(通过基本面摘要)以及对当前环境进行宏观经济分析,同时考虑价格行为动态( 通过宏观和价格动态摘要)。
以下段落详细介绍了该架构的关键组件。
3.1 Progressive News Summarizer
公司特定新闻(包括公告、报告、分析师意见和研究结果)对市场情绪和随后股价的影响不可低估。根据其内容,此类新闻可能会产生短期、长期或最小的影响。因此,新闻的来源和解读,需要股票分析的细致处理。
渐进式新闻摘要器 (
P
N
S
,
t
PN_{S,t}
PNS,t) 负责新闻采集、浓缩,并为股票最具影响力的新闻制作渐进式摘要。如图 2 所示,与特定股票对应的每日新闻条目是从可用的 API 中获取的。该研究利用 EODHD 股票市场和财经新闻 API 获取新闻来源。公式 1 和公式 2 分别模拟了获取每日新闻摘要和渐进新闻摘要的过程。
N
S
,
τ
=
⊕
i
=
t
−
τ
t
S
u
m
m
a
r
i
z
e
(
N
S
,
i
)
(1)
N_{S,\tau}=\oplus^t_{i=t-\tau}Summarize(N_{S,i})\tag{1}
NS,τ=⊕i=t−τtSummarize(NS,i)(1)
P
N
S
,
t
=
S
u
m
m
a
r
i
z
e
(
P
N
S
,
t
=
t
−
1
,
N
S
,
τ
)
(2)
PN_{S,t}=Summarize(PN_{S,t=t-1},N_{S,\tau})\tag{2}
PNS,t=Summarize(PNS,t=t−1,NS,τ)(2)
其中,
P
N
S
,
t
PN_{S,t}
PNS,t:股票
S
S
S 在时刻
t
t
t 的渐进新闻摘要。
S
u
m
m
a
r
i
z
e
(
)
Summarize()
Summarize():合成一个更新摘要的函数。
N
S
,
τ
N_{S,\tau}
NS,τ:最近
τ
τ
τ 天的股票
S
S
S 的新闻摘要汇总。
N
S
,
i
N_{S,i}
NS,i:第
i
i
i 天股票
S
S
S 的可用新闻文章。
τ
\tau
τ:聚合中包含的天数,代表渐进新闻摘要的时间窗口。
⊕
\oplus
⊕:代表日级新闻摘要的拼接。
公司的每日新闻经过预处理,以排除与公司无关的文本,例如标题诱饵文章,从而确保其采用适当的格式输入提示。GPT4 通过 OpenAI 的 API 访问,系统提示提取股票的每日新闻并生成简明的每日新闻摘要 (
N
S
,
i
N_{S,i}
NS,i)。后者存储在集中存储库中。
虽然此方法提供了特定日期的摘要,但必须包括公司新闻相关内容的持续叙述,尤其是仍然重要的旧新闻。例如,在合并或法律纠纷的情况下,有关公司好于预期的业绩的公告可能对整体决策过程的影响较小。渐进式新闻摘要生成器通过将最新的新闻摘要 (
N
S
,
τ
N_{S,τ}
NS,τ) 与之前的渐进式摘要 (
P
N
S
,
t
−
1
PN_{S,t−1}
PNS,t−1) 集成来解决此问题。更具体地说,结构化提示指示 GPT-4 模仿金融分析师的角色,其任务是通过整合各种类型的信息来合成特定股票的更新摘要。提示内容包括:
- 当前摘要:截至特定月份和年份的公司及其股票的最新摘要。
- 每日新闻摘要:新闻文章,分为特定月份内公司的事实新闻和分析师的观点。
- 指令:整合最相关的信息,区分事实新闻和分析师的观点。
该摘要是综合考虑过去一个月的每日新闻摘要和上个月制定的渐进新闻摘要。此过程确保摘要器始终反映最新、最相关和重要的发展,位该公司在新闻中的状况提供一个全面且实时的快照。
虽然本研究中的渐进新闻摘要器是按月度间隔定制的,但其设计提供了对各种频率的适应性,以匹配不同的投资方法。调整不同时间间隔的摘要器频率对多样化投资策略有效性的影响仍然是未来探索的领域。
如表 1 所示,Progressive News Summarizer 有效地捕捉了 2023 年两个不同月份中围绕 Apple Inc. (AAPL.US) 不断变化的叙述。摘要涵盖了广泛的主题,从公司的持续财务业绩到其战略举措和市场挑战。
10 月份,人们关注的焦点是苹果在科技行业的重要作用,其中包括 iPhone 15 系列的推出以及 Apple Watch 和 AirPods 的更新。 这一时期还凸显了智能手机销售的挑战、地缘政治问题的影响以及股票表现的波动。本月的独特报道是关于苹果有意收购一级方程式转播权以及首席执行官蒂姆·库克出售公司股票的报道,突显了该公司多元化的战略利益和高管决策。
到了 11 月,虽然许多早期的主题仍在继续,但新的元素出现了。该摘要揭示了苹果的销售放缓、智能手机市场的竞争压力以及其合作伙伴关系的战略转变,包括终止与高盛的信用卡协议。值得注意的是,该公司在可持续发展方面的努力和 M3 芯片的推出以及流媒体内容的扩展受到了关注。
该表展示了渐进式新闻摘要器整合最新企业发展、市场动态和战略策略的自适应能力。事实证明,它作为对投资机会和行业趋势进行全面、最新分析的工具是非常有价值的。表 2 提供了该组件生成的摘要的示例。
3.2 Fundamentals Summarizer
基本面数据在预测性财务分析中至关重要,它提供了反映该公司当前健康状况和未来发展轨迹的量化指标。如图 3 所示,我们利用 EODHD 的基本面数据 API 来获取该季度信息。为了便于财务数据的比较,我们在将数据输入提示之前对数据进行了预处理。此预处理包括特定的数字缩写技术,该技术通过用“百万”、“十亿”或“千”等前缀表示它们,将大数字转换为更紧凑的格式。例如,十亿数字的格式为“X十亿”,其中X是原始数字除以10亿,四舍五入到小数点后两位。这种方法标准化了财务数据,确保了LLM输入的一致性和清晰度。我们发现这个预处理步骤对于 GPT-4 准确比较和解释复杂的财务数据至关重要。
此外,来自不同季度的数据以表格形式并排放置。由此产生的提示将输入 GPT-4 模型,通过比较最近的季度财务报表,深入研究盈利能力、收入轨迹、债务指标和现金流动态等方面。对近期数据的关注使LLM能够发现财务绩效的变化,并可能将其与进步新闻联系起来。更具体地说,MarketSenseAI 使用以下公式对公司的财务状况进行建模:
F
s
=
S
u
m
m
a
r
i
z
e
(
S
t
a
n
d
a
r
d
i
z
e
(
∪
i
=
1
n
F
i
n
a
n
c
i
a
l
D
a
t
a
s
,
q
i
)
)
(3)
F_s=Summarize (Standardize(\cup^n_{i=1}FinancialData_{s,q_i}))\tag{3}
Fs=Summarize(Standardize(∪i=1nFinancialDatas,qi))(3)
其中,
F
i
n
a
n
c
i
a
l
D
a
t
a
s
,
q
i
FinancialData_{s,q_i}
FinancialDatas,qi:表示股票S在季度
q
i
q_i
qi的金融数据,其中
i
=
1
,
.
.
,
n
i=1,..,n
i=1,..,n(过去n个季度)。
S
t
a
n
d
a
r
d
i
z
e
(
)
Standardize()
Standardize():应用类似于数字规整的标准化技术。
S
u
m
m
a
r
i
z
e
(
)
Summarize()
Summarize():从标准化数据中生成一个全面摘要。
结构化提示命令 GPT-4 扮演关注最新趋势的金融分析师的角色。人工智能的任务是通过分析特定公司最近几个季度的股票来评估其股票的财务状况。提示内容包括:
- 财务表格:最近几个季度的资产负债表、损益表和现金流量的主要财务数据。
- 分析重点:盈利能力、收入增长、债务水平和现金流生成的最新趋势和发展。
- 指令:进行项目分点形式分析。
尽管LLM传统上在理解复杂的数值数据方面面临挑战,但我们的预处理方法与 GPT-4 的功能相结合,可确保准确的比较和解释。基本面摘要旨在对公司的财务状况提供公正、真实的概述,避免任何直接投资建议。表 3 展示了基本面摘要器如何从财务报表(包括收入、余额和现金流量表)中提取关键见解。与渐进式新闻摘要器类似,该组件可以独立使用,以提供所分析公司的简明财务概况。
3.3 Stock Price Dynamics Summarizer
股票价格动态摘要器是 MarketSenseAI 的关键组件,用于分析股票的价格变动和财务指标并对其进行背景分析。如图 4 所示,该组件不仅检查目标股票,还根据公司描述和行业将其表现与五只最相似的股票进行比较,并包括以标准普尔 500 指数为代表的更广泛的市场背景。股票价格动态摘要的数学表示由公式 4 给出。
P
S
,
t
=
S
u
m
m
a
r
i
z
e
(
M
e
t
r
i
c
s
S
,
t
,
∪
j
=
1
n
M
e
t
r
i
c
s
P
j
,
t
)
(4)
P_{S,t}=Summarize(Metrics_{S,t},\cup^n_{j=1}Metrics_{P_j,t})\tag{4}
PS,t=Summarize(MetricsS,t,∪j=1nMetricsPj,t)(4)
其中,
P
S
,
t
P_{S,t}
PS,t:股票
S
S
S在时刻
t
t
t的股票价格动态摘要。
M
e
t
r
i
c
s
S
,
t
Metrics_{S,t}
MetricsS,t:股票
S
S
S在时刻
t
t
t的性能指标。
M
e
t
r
i
c
s
P
j
,
t
Metrics_{P_j,t}
MetricsPj,t:每个同行股票
P
j
P_j
Pj 在时刻
t
t
t 的性能指标。
∪
\cup
∪:用于比较的同行股票指标的联合。
S
u
m
m
a
r
i
z
e
(
)
Summarize()
Summarize():将分析浓缩为简洁、真实的报告的函数。
该prompt的结构包含:
- 性能指标:使用累积回报、波动性、夏普比率、最大回撤和相关矩阵等指标分析股票的性能。
- 比较分析:将股票的表现与相关股票和标准普尔 500 指数进行比较。
- 指令:以简明而真实的报告总结调查结果。
算法 1 概述了识别相似股票的方法,利用 MPNet 语言模型生成嵌入并计算相似性得分。更具体地说,股票描述由 MPNet 编码为高维向量,捕捉每家公司的独特特征和活动。这有助于计算标准普尔 500 指数上市公司之间的成对相似度分数。这些分数对于识别与目标股票具有相似属性的股票至关重要,从而确保进行将个股表现与更广泛的市场趋势相结合的全面比较分析。
摘要器获取目标股票、其类似股票以及 S&P 500 指数的市场数据。它分析关键财务指标,包括 3、6 和 12 个月的累积回报率和夏普比率,并计算波动性和最大回撤。这些指标,尤其是夏普比率和最大回撤,至关重要,因为它们分别提供了对市场低迷期间股票的风险调整回报和弹性的见解。这种全面的分析提供了对该股票相对于同行和更广泛市场的表现的广泛了解。
表 4 展示了摘要器输出的示例,展示了其将复杂数据提炼为易于理解的见解的能力。这提供了与类似公司相关的股票市场动态和整体市场趋势的多维视图。
3.4 Macroeconomic Environment Summary
进行深入的宏观经济分析对于做出明智的投资决策和有效的资本配置至关重要。此类分析提供了对整体经济健康状况和表现的重要见解,对个别公司以及更广泛的股票市场的盈利能力和价值产生了重大影响。通过考虑影响投资格局的主要因素,例如 Covid-19 大流行或乌克兰战争,投资者可以做出更明智的决策。
为了实现这一点,MarketSenseAI 包含一个名为 MarketDigest 的组件,如图 5 所示。该组件每两周综合一次投资报告和研究文章,提供复杂经济数据和趋势的简洁摘要。MarketDigest 从领先银行和投资机构(包括高盛、摩根士丹利、瑞银和贝莱德)的各种公开报告中获取信息。MarketSenseAI 宏观经济环境摘要组件 MarketDigest 的数学表示可以表述如下:
M
t
=
S
u
m
m
a
r
i
z
e
(
∪
j
=
1
N
S
u
m
m
a
r
i
z
e
(
R
e
p
o
r
t
j
,
t
)
)
(6)
M_{t}=Summarize(\cup^N_{j=1}Summarize(Report_{j,t}))\tag{6}
Mt=Summarize(∪j=1NSummarize(Reportj,t))(6)
其中,
M
t
M_t
Mt:表示时刻
t
t
t的宏观经济摘要。
S
u
m
m
a
r
i
z
e
(
)
Summarize()
Summarize():将数据合成一个简洁描述的函数。
∪
\cup
∪:用于联合独立摘要。
R
e
p
o
r
t
j
,
t
Report_{j,t}
Reportj,t:在时刻
t
t
t的投资报告或文章
j
j
j。
N
N
N:在时刻
t
t
t用于分析的报告或文章的数目。
该过程首先将这些报告和文章转换为文本形式。随后,该组件利用 GPT-4 总结各个报告,然后在第二步中将这些单独的摘要浓缩为全面的概述。这种方法使 MarketDigest 将不同的观点和分析概括为连贯的叙述,提供有关宏观经济环境、央行政策、首选行业或国家以及地缘政治趋势的共识。输出简洁而全面,考虑了市场分析师和专家之间潜在的矛盾或不同观点。MarketDigest 的提示结构包括:
- 初始摘要:各个报告的摘要,强调关键的宏观经济要素,包括央行政策、地缘政治见解和市场前景。
- 综合和情绪分析:对所有报告进行深入分析,提取共识和分歧观点,重点关注按资产类别或投资维度分类的情绪分析。
- 指令:要求提供详细且真实的报告,重点关注当前市场情绪和按资产类别进行分析分类。
表 5 提供了 MarketDigest 摘要的示例。值得注意的是,KM Cube Asset Management 于 2023 年 3 月启动了 MarketDigest,作为重要的分析工具,为客户提供简洁的市场概况。该报告每两周发布一次,有助于加深私人和机构客户对市场动态的了解,从而为他们的投资决策流程提供信息。此外,MarketDigest 是公司每月投资委员会会议不可或缺的一部分,它为投资组合策略的审议和制定以及全权委托产品的管理做出了重大贡献。
3.5 Signal Generation
信号生成组件作为 MarketSenseAI 管道的最后阶段(图 1),集成了新闻、基本面、价格动态和宏观经济分析组件的文本输出。这个过程会产生针对特定股票的全面投资建议,并附有详细的理由。
本质上,我们认为,股票的投资决策在一定程度上取决于新闻中相关公司最重要的发展、公司的财务状况、股票相对于竞争对手和市场的表现,以及更广泛的宏观经济环境。决策模型表示为:
I
S
=
f
(
N
s
,
F
s
,
P
s
,
M
)
(7)
I_S=f(N_s,F_s,P_s,M)\tag{7}
IS=f(Ns,Fs,Ps,M)(7)
其中,
N
s
,
F
s
,
P
s
N_s, F_s, P_s
Ns,Fs,Ps 和
M
M
M 是当前新闻、基本面、价格动态和宏观经济状况的特定于股票的文本表示,可从第 3.1-3.4 节中的组件获得。
我们认为最先进的LLM GPT-4 拥有对这些不同类别的数据进行权衡和推理的必要能力,其在复杂的财务推理任务中表现出的熟练程度就证明了这一点。在其运作中,GPT-4模型被提示采取专家金融分析师的角色。该方法采用思维链方法,通过反映专业金融分析师思维模式的逻辑、多步骤推理过程来指导模型。通过应用这种技术,MarketSenseAI 可以有效地分析和综合新闻、公司基本面、股票表现数据以及可能影响给定股票的宏观经济因素,从而为选股提供合理且结构化的见解。这种方法在金融等复杂领域特别有用,在这些领域,像专家一样浏览多方面数据和推理的能力至关重要。同时,采用上下文学习来根据当前的财务状况和不断变化的市场数据动态调整分析。这种双重策略使 MarketSenseAI 能够提供适应不断变化的市场条件和投资者偏好的深刻见解,代表着人工智能驱动的财务分析的重大进步。提示结构如下:
- 新闻分析:该模型首先评估有关目标公司的最新新闻摘要,评估其对股票表现的潜在影响。
- 价格动态分析:接下来,它将股票的价格动态与相关股票和整体市场的价格动态进行比较,提供相对表现的视角。
- 宏观经济环境分析:然后,该模型会考虑全球经济趋势和事件,评估更广泛的宏观经济格局及其对目标公司的影响。
- 基本面分析:最后一步涉及审查公司的基本财务数据,分析其当前的财务状况和未来前景。
该模型的输出采用简洁的格式,包括决策(“买入”、“卖出”或“持有”)以及对该选择背后推理的清晰、逐步解释。术语“买入”和“卖出”是在投资组合定位(分别为多头和空头头寸)的背景下定义的,而“持有”则表示不包含在投资组合的构成中。