1. 特征值和特征向量

特征值和特征向量

在数学上,特别是线性代数中,对于一个给定的线性变换 A A A, 它的特征向量 v v v 经过这个线性变换的作用之后,得到的新向量仍然与原来的 v v v 保持在同一条直线上, 但其长度或方向也许会改变。 即
A v = λ v Av= \lambda v Av=λv
其中 λ \lambda λ 为标量,即特征向量的长度在该线性变换下的缩放比例,程为特征值。

举例:
A = [ 1 1 4 − 2 ] A = \begin{bmatrix} 1 & 1 \\ 4 & -2 \\ \end{bmatrix} A=[1412]

v 1 = [ 1 2 ] v_1 = \begin{bmatrix} 1 \\ 2 \\ \end{bmatrix} v1=[12] \quad A v 1 = [ 3 0 ] Av_1 = \begin{bmatrix} 3 \\ 0 \\ \end{bmatrix} Av1=[30]

v 2 = [ 1 1 ] v_2 = \begin{bmatrix} 1 \\ 1 \\ \end{bmatrix} v2=[11] \quad A v 2 = [ 2 2 ] = 2 [ 1 1 ] Av_2 = \begin{bmatrix} 2 \\ 2 \\ \end{bmatrix} = 2\begin{bmatrix} 1 \\ 1 \\ \end{bmatrix} Av2=[22]=2[11]

在这里插入图片描述
A v 2 Av_2 Av2 v 2 v_2 v2 在一条直线上
A v 2 = 2 v 2 Av_2 = 2v_2 Av2=2v2 \quad v 2 v_2 v2是特征向量,2是特征值

求解特征值,特征向量

A v = λ v Av= \lambda v Av=λv
A v − λ v = 0 Av - \lambda v = 0 Avλv=0
( A − λ I ) v = 0 (A - \lambda I)v = 0 (AλI)v=0 有非零解
∣ A − λ I ∣ = 0 \mid A - \lambda I \mid = 0 AλI=0

A = [ 1 1 4 − 2 ] A = \begin{bmatrix} 1 & 1 \\ 4 & -2 \\ \end{bmatrix} A=[1412]
A − λ I = [ 1 − λ 1 4 − 2 − λ ] = 0 A - \lambda I = \begin{bmatrix} 1 - \lambda & 1 \\ 4 & -2-\lambda \\ \end{bmatrix} =0 AλI=[1λ412λ]=0

( 1 − λ ) ( − 2 − λ ) − 1 ∗ 4 = 0 (1-\lambda)(-2-\lambda)-1*4=0 (1λ)(2λ)14=0
( λ − 2 ) ( λ + 3 ) = 0 (\lambda-2)(\lambda+3)=0 (λ2)(λ+3)=0
λ 1 = 2 λ 2 = − 3 \lambda_1=2 \quad \lambda_2=-3 λ1=2λ2=3

带入原方程
λ 1 = 2 \lambda_1 = 2 λ1=2

[ 1 − 2 1 4 − 2 − 2 ] v 1 = 0 \begin{bmatrix} 1-2 & 1 \\ 4 & -2-2 \\ \end{bmatrix} v_1 = 0 [124122]v1=0

[ − 1 1 4 − 4 ] [ v 11 v 12 ] = 0 \begin{bmatrix} -1 & 1 \\ 4 & -4 \\ \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \\ \end{bmatrix}= 0 [1414][v11v12]=0

− v 11 + v 12 = 0 4 v 11 − 4 v 12 = 0 → v 11 = v 12 -v_{11}+v_{12}=0 \quad 4v_{11}-4v_{12}=0 \rightarrow v_{11} = v_{12} v11+v12=04v114v12=0v11=v12

任取一组解

λ 1 = 2 \lambda_1 = 2 λ1=2 \quad v 1 = [ 1 1 ] v_1= \begin{bmatrix} 1 \\ 1 \\ \end{bmatrix} v1=[11]

同理,当 λ 2 = − 3 \lambda_2 = -3 λ2=3

[ 1 − ( − 3 ) 1 4 − 2 − ( − 3 ) ] [ v 21 v 22 ] = 0 \begin{bmatrix} 1-(-3) & 1 \\ 4 & -2-(-3) \\ \end{bmatrix} \begin{bmatrix} v_{21} \\ v_{22} \\ \end{bmatrix}= 0 [1(3)412(3)][v21v22]=0

4 v 21 + v 22 = 0 4v_{21}+v_{22}=0 4v21+v22=0

任取一组解

同理,当 λ 2 = − 3 \lambda_2 = -3 λ2=3 \quad v 2 = [ 1 − 4 ] v_2= \begin{bmatrix} 1 \\ -4 \\ \end{bmatrix} v2=[14]

应用

代对角矩阵,解耦 Decouple

P = [ v 1 v 2 ] P= \begin{bmatrix} v_1 & v_2 \\ \end{bmatrix} P=[v1v2] P : c o o r d i n a t e      t r a n s f o r m a t i o n      m a t r i x \quad \quad P:coordinate \;\; transformation \;\; matrix P:coordinatetransformationmatrix

A P = A [ v 1 v 2 ] = A [ v 11 v 21 v 12 v 22 ] = [ A [ v 11 v 12 ] A [ v 21 v 22 ] ] = [ λ 1 [ v 11 v 12 ] λ 2 [ v 21 v 22 ] ] = [ λ 1 v 11 λ 2 v 21 λ 1 v 12 λ 2 v 22 ] = [ v 11 v 21 v 12 v 22 ] [ λ 1 0 0 λ 2 ] \begin{aligned} AP &=A \begin{bmatrix} v_1 & v_2 \\ \end{bmatrix}=A \begin{bmatrix} v_{11} & v_{21} \\ v_{12} & v_{22} \\ \end{bmatrix} = \begin{bmatrix} A\begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} & A \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \lambda_1 \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} & \lambda_2 \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix} \end{bmatrix} \\ &= \begin{bmatrix} \lambda_1 v_{11} & \lambda_2 v_{21} \\ \lambda_1 v_{12} & \lambda_2 v_{22} \\ \end{bmatrix} = \begin{bmatrix} v_{11} & v_{21} \\ v_{12} & v_{22} \\ \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \\ \end{bmatrix} \end{aligned} AP=A[v1v2]=A[v11v12v21v22]=[A[v11v12]A[v21v22]]=[λ1[v11v12]λ2[v21v22]]=[λ1v11λ1v12λ2v21λ2v22]=[v11v12v21v22][λ100λ2]

A P = P Λ AP=P \Lambda AP=PΛ
P − 1 A P = P − 1 P Λ = Λ P^{-1}AP=P^{-1}P \Lambda= \Lambda P1AP=P1PΛ=Λ

原视频:
https://www.bilibili.com/video/av15201777?from=search&seid=15999928462480899873

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值