基本方程
基本方程包含了磁链方程、电压方程、转矩方程、运动方程 ,这里主要是在 d q dq dq坐标下写出三个方程。
前言
本文总结了BLDC在 d q dq dq坐标系下的基本方程,并打算推导无感FOC中滑膜观测器可能要使用到的 α β \alpha\beta αβ和 d q dq dq坐标下的混合电压方程。
一、基本方程
为了方便我们选择Clarke变换中保持幅值不变,即 K = 2 3 K=\frac{2}{3} K=32。
1.磁链方程:
{ ψ d = L d i d + ψ f ψ q = L q i q \left\{ \begin{aligned} \psi_d&=L_di_d+\psi_f\\ \psi_q&=L_qi_q \end{aligned} \right. {
ψdψq=Ldid+ψf=Lqiq
其中 ψ f \psi_f ψf是永磁体转子磁场。
2.电压方程:
{ u d = R i d + L d d i d d t − ω ψ q = R i d + L d d i d d t − ω L q i q u q = R i q + L q d i q d t + ω ψ d = R i q + L q d i q d t + ω ( L d i d + ψ f ) \left\{ \begin{aligned} u_d&=Ri_d+L_d\frac{di_d}{dt}-{\omega}\psi_q=Ri_d+L_d\frac{di_d}{dt}-{\omega}L_qi_q\\ u_q&=Ri_q+L_q\frac{di_q}{dt}+{\omega}\psi_d=Ri_q+L_q\frac{di_q}{dt}+{\omega}(L_di_d+ψ_f) \end{aligned} \right. ⎩⎪⎪⎨⎪⎪⎧uduq=Rid+Lddtdid−ωψq=Rid+Lddtdid−ωLqiq=Riq+Lqdtdiq+ωψd=Riq+Lqdtdiq+ω(Ldid+ψf)
其中 L d , L q L_d,L_q Ld,Lq具体定义参考《BLDC的dq轴方程推导》
3.转矩方程:
忽略电阻消耗(当然可以扣除电阻损耗功率),并考虑稳态电流(否则电功率回在电感中来回充放问题变得复杂而感觉没有必要),则电机三相的总功率就是转矩的功率,下面我们用 u d 、 i d 、 u q 、 i q u_d、i_d、u_q、i_q ud、id、uq、iq表示稳态电压电流。原则上“转矩=总电功率/机械角速度”而Clarke变换和Park变换对功率的影响已经在《BLDC中的Clarke变换和Park变换》已经由详细的讨论了。
τ e m = P / ω j = 3 2 ( u d i d + u q i q ) / ( ω / p n ) = 3 p n ( u d i d + u q i q ) 2 ω = 3 2 p n ( ψ f i q + ( L d − L q ) i d i q ) \tau_{em}=P/\omega_j=\frac{3}{2}(u_di_d+u_qi_q)/(\omega/p_n)=\frac{3p_n(u_di_d+u_qi_q)}{2\omega}=\frac{3}{2}p_n(\psi_fi_q+(L_d-Lq)i_di_q) τem=P/ωj=23(udid+uqiq)/(ω/pn)=2ω3pn(udid+uqiq)=23pn(ψfiq+(Ld−Lq)idiq)
其中:
ω j \omega_j ωj为机械角速度
ω \omega ω为电角速度
p n p_n pn为极对数
题外话:根据转矩公式,即使转子没有磁场 ψ f \psi_f ψf,只要 L d , L q L_d,Lq Ld,Lq差距明显(凸极效应大)的电机也依靠转子磁阻不均匀来转动,这样好像叫做磁阻电机。
4.运动方程:
运动方程就比较简单了
τ e m = τ L + 1 p n B ω + 1 p n J d ω d t \tau_{em}=\tau_{L}+\frac{1}{p_n}B\omega+\frac{1}{p_n}J\frac{d\omega}{dt} τem=τL+pn1Bω+pn1Jdtdω
其中:
τ L \tau_{L} τL为负载转矩
p n p_n pn为极对数
B B B为摩擦系数
ω \omega ω为电角速度
二、 α β \alpha\beta αβ坐标下的混合电压方程
为了方便变换,我们还是把 d q dq dq坐标下的电压方程写成矩阵形式,然后以此展开推导:
[ u d u q ] = R [ i d i q ] + [ L d 0 0 L q ] d d t [ i d i q ] + [ 0 − ω L q ω L d 0 ] [ i d i q ] + [ 0 − ω ω 0 ] [ ψ f 0 ] \begin{aligned} &\begin{bmatrix}u_d\\u_q\end{bmatrix} =R\begin{bmatrix}i_d\\i_q\end{bmatrix} +\begin{bmatrix}L_d&0\\0&L_q\end{bmatrix}\frac{d}{dt}\begin{bmatrix}i_d\\i_q\end{bmatrix} +\begin{bmatrix}0&-{\omega}L_q\\{\omega}L_d&0\end{bmatrix}\begin{bmatrix}i_d\\i_q\end{bmatrix} +\begin{bmatrix}0&-\omega\\\omega&0\end{bmatrix}\begin{bmatrix}ψ_f\\0\end{bmatrix} \end{aligned} [uduq]=R[idiq]+[Ld00Lq]dtd[idiq]+[0

本文详细介绍了无刷直流电机(BLDC)在dq坐标系下的基本方程,包括磁链方程、电压方程、转矩方程及运动方程,并推导了αβ坐标下的混合电压方程。
最低0.47元/天 解锁文章
4294





