五、BLDC矢量控制基础知识:BLDC模型的基本方程

基本方程

基本方程包含了磁链方程、电压方程、转矩方程、运动方程 ,这里主要是在 d q dq dq坐标下写出三个方程。



前言

本文总结了BLDC在 d q dq dq坐标系下的基本方程,并打算推导无感FOC中滑膜观测器可能要使用到的 α β \alpha\beta αβ d q dq dq坐标下的混合电压方程。


一、基本方程

为了方便我们选择Clarke变换中保持幅值不变,即 K = 2 3 K=\frac{2}{3} K=32
1.磁链方程:
{ ψ d = L d i d + ψ f ψ q = L q i q \left\{ \begin{aligned} \psi_d&=L_di_d+\psi_f\\ \psi_q&=L_qi_q \end{aligned} \right. {ψdψq=Ldid+ψf=Lqiq
其中 ψ f \psi_f ψf是永磁体转子磁场。
2.电压方程:
{ u d = R i d + L d d i d d t − ω ψ q = R i d + L d d i d d t − ω L q i q u q = R i q + L q d i q d t + ω ψ d = R i q + L q d i q d t + ω ( L d i d + ψ f ) \left\{ \begin{aligned} u_d&=Ri_d+L_d\frac{di_d}{dt}-{\omega}\psi_q=Ri_d+L_d\frac{di_d}{dt}-{\omega}L_qi_q\\ u_q&=Ri_q+L_q\frac{di_q}{dt}+{\omega}\psi_d=Ri_q+L_q\frac{di_q}{dt}+{\omega}(L_di_d+ψ_f) \end{aligned} \right. uduq=Rid+Lddtdidωψq=Rid+LddtdidωLqiq=Riq+Lqdtdiq+ωψd=Riq+Lqdtdiq+ω(Ldid+ψf)
其中 L d , L q L_d,L_q Ld,Lq具体定义参考《BLDC的dq轴方程推导》
3.转矩方程:
忽略电阻消耗(当然可以扣除电阻损耗功率),并考虑稳态电流(否则电功率回在电感中来回充放问题变得复杂而感觉没有必要),则电机三相的总功率就是转矩的功率,下面我们用 u d 、 i d 、 u q 、 i q u_d、i_d、u_q、i_q udiduqiq表示稳态电压电流。原则上“转矩=总电功率/机械角速度”而Clarke变换和Park变换对功率的影响已经在《BLDC中的Clarke变换和Park变换》已经由详细的讨论了。
τ e m = P / ω j = 3 2 ( u d i d + u q i q ) / ( ω / p n ) = 3 p n ( u d i d + u q i q ) 2 ω = 3 2 p n ( ψ f i q + ( L d − L q ) i d i q ) \tau_{em}=P/\omega_j=\frac{3}{2}(u_di_d+u_qi_q)/(\omega/p_n)=\frac{3p_n(u_di_d+u_qi_q)}{2\omega}=\frac{3}{2}p_n(\psi_fi_q+(L_d-Lq)i_di_q) τem=P/ωj=23(udid+uqiq)/(ω/pn)=2ω3pn(udid+uqiq)=23pn(ψfiq+(LdLq)idiq)
其中:
ω j \omega_j ωj为机械角速度
ω \omega ω为电角速度
p n p_n pn为极对数
题外话:根据转矩公式,即使转子没有磁场 ψ f \psi_f ψf,只要 L d , L q L_d,Lq Ld,Lq差距明显(凸极效应大)的电机也依靠转子磁阻不均匀来转动,这样好像叫做磁阻电机。
4.运动方程:
运动方程就比较简单了
τ e m = τ L + 1 p n B ω + 1 p n J d ω d t \tau_{em}=\tau_{L}+\frac{1}{p_n}B\omega+\frac{1}{p_n}J\frac{d\omega}{dt} τem=τL+pn1Bω+pn1Jdtdω
其中:
τ L \tau_{L} τL为负载转矩
p n p_n pn为极对数
B B B为摩擦系数
ω \omega ω为电角速度

二、 α β \alpha\beta αβ坐标下的混合电压方程

为了方便变换,我们还是把 d q dq dq坐标下的电压方程写成矩阵形式,然后以此展开推导:
[ u d u q ] = R [ i d i q ] + [ L d 0 0 L q ] d d t [ i d i q ] + [ 0 − ω L q ω L d 0 ] [ i d i q ] + [ 0 − ω ω 0 ] [ ψ f 0 ] \begin{aligned} &\begin{bmatrix}u_d\\u_q\end{bmatrix} =R\begin{bmatrix}i_d\\i_q\end{bmatrix} +\begin{bmatrix}L_d&0\\0&L_q\end{bmatrix}\frac{d}{dt}\begin{bmatrix}i_d\\i_q\end{bmatrix} +\begin{bmatrix}0&-{\omega}L_q\\{\omega}L_d&0\end{bmatrix}\begin{bmatrix}i_d\\i_q\end{bmatrix} +\begin{bmatrix}0&-\omega\\\omega&0\end{bmatrix}\begin{bmatrix}ψ_f\\0\end{bmatrix} \end{aligned} [uduq]=R[idiq]+[Ld00Lq]dtd[idiq]+[0ωLdωLq0][idiq]+[0ωω0][ψf0]
为了变换方便先将矩阵对称化:
[ u d u q ] = R [ i d i q ] + [ L d 0 0 L d ] d d t [ i d i q ] + [ 0 0 0 L q − L d ] d d t [ i d i q ] + [ 0 − ω L q ω L q 0 ] [ i d i q ] + [ 0 0 ω ( L d − L q ) 0 ] [ i d i q ] + [ 0 − ω ω 0 ] [ ψ f 0 ] \begin{aligned} \begin{bmatrix}u_d\\u_q\end{bmatrix} &=R\begin{bmatrix}i_d\\i_q\end{bmatrix} +\begin{bmatrix}L_d&0\\0&L_d\end{bmatrix}\frac{d}{dt}\begin{bmatrix}i_d\\i_q\end{bmatrix} +\begin{bmatrix}0&0\\0&L_q-L_d\end{bmatrix}\frac{d}{dt}\begin{bmatrix}i_d\\i_q\end{bmatrix}\\ &+\begin{bmatrix}0&-{\omega}L_q\\{\omega}L_q&0\end{bmatrix}\begin{bmatrix}i_d\\i_q\end{bmatrix} +\begin{bmatrix}0&0\\{\omega}(L_d-L_q)&0\end{bmatrix}\begin{bmatrix}i_d\\i_q\end{bmatrix} +\begin{bmatrix}0&-\omega\\\omega&0\end{bmatrix}\begin{bmatrix}ψ_f\\0\end{bmatrix} \end{aligned} [uduq]=R[idiq]+[Ld00Ld]dtd[idiq]+[000LqLd]dtd[idiq]+[0ωLqωLq0][idiq]+[0ω(LdLq)00][idiq]+[0ωω0][ψf0]
化简后得到:
[ u d u q ] = R [ i d i q ] + [ L d 0 0 L d ] d d t [ i d i q ] + [ 0 − ω L q ω L q 0 ] [ i d i q ] + [ 0 ω ψ f + ( L d − L q ) ( ω i d − d i q d t ) ] \begin{aligned} \begin{bmatrix}u_d\\u_q\end{bmatrix} &=R\begin{bmatrix}i_d\\i_q\end{bmatrix} +\begin{bmatrix}L_d&0\\0&L_d\end{bmatrix}\frac{d}{dt}\begin{bmatrix}i_d\\i_q\end{bmatrix}+\begin{bmatrix}0&-{\omega}L_q\\{\omega}L_q&0\end{bmatrix}\begin{bmatrix}i_d\\i_q\end{bmatrix}\\ &+\begin{bmatrix}0\\\omegaψ_f+(L_d-L_q)({\omega}i_d-\frac{di_q}{dt})\end{bmatrix} \end{aligned} [uduq]=R[idiq]+[Ld00Ld]dtd[idiq]+[0ωLqωLq0][idiq]+[0ωψf+(LdLq)(ωiddtdiq)]
再利用Park变换带回,其实就是:
P ( θ ) [ u α u β ] = R P ( θ ) [ i α i β ] + [ L d 0 0 L d ] d d t ( P ( θ ) [ i α i β ] ) + [ 0 − ω L q ω L q 0 ] P ( θ ) [ i α i β ] + [ 0 ω ψ f + ( L d − L q ) ( ω i d − d i q d t ) ] \begin{aligned} &\bm{P(\theta)}\begin{bmatrix}u_\alpha\\u_\beta\end{bmatrix} =R\bm{P(\theta)}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix} +\begin{bmatrix}L_d&0\\0&L_d\end{bmatrix}\frac{d}{dt}(\bm{P(\theta)}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}) +\begin{bmatrix}0&-{\omega}L_q\\{\omega}L_q&0\end{bmatrix}\bm{P(\theta)}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}\\ &+\begin{bmatrix}0\\\omegaψ_f+(L_d-L_q)({\omega}i_d-\frac{di_q}{dt})\end{bmatrix} \end{aligned} P(θ)[uαuβ]=RP(θ)[iαiβ]+[Ld00Ld]dtd(P(θ)[iαiβ])+[0ωLqωLq0]P(θ)[iαiβ]+[0ωψf+(LdLq)(ωiddtdiq)]
两边同时乘以Park逆变换 P ( − θ ) \bm{P(-\theta)} P(θ)
[ u α u β ] = R [ i α i β ] + P ( − θ ) [ L d 0 0 L d ] d d t ( P ( θ ) [ i α i β ] ) + P ( − θ ) [ 0 − ω L q ω L q 0 ] P ( θ ) [ i α i β ] + P ( − θ ) [ 0 ω ψ f + ( L d − L q ) ( ω i d − d i q d t ) ] \begin{aligned} &\begin{bmatrix}u_\alpha\\u_\beta\end{bmatrix} =R\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix} +\bm{P(-\theta)}\begin{bmatrix}L_d&0\\0&L_d\end{bmatrix}\frac{d}{dt}(\bm{P(\theta)}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}) +\bm{P(-\theta)}\begin{bmatrix}0&-{\omega}L_q\\{\omega}L_q&0\end{bmatrix}\bm{P(\theta)}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}\\ &+\bm{P(-\theta)}\begin{bmatrix}0\\\omegaψ_f+(L_d-L_q)({\omega}i_d-\frac{di_q}{dt})\end{bmatrix} \end{aligned} [uαuβ]=R[iαiβ]+P(θ)[Ld00Ld]dtd(P(θ)[iαiβ])+P(θ)[0ωLqωLq0]P(θ)[iαiβ]+P(θ)[0ωψf+(LdLq)(ωiddtdiq)]
即:
[ u α u β ] = R [ i α i β ] + P ( − θ ) [ L d 0 0 L d ] d d t ( P ( θ ) ) [ i α i β ] + P ( − θ ) [ L d 0 0 L d ] P ( θ ) d d t [ i α i β ] + P ( − θ ) [ 0 − ω L q ω L q 0 ] P ( θ ) [ i α i β ] + P ( − θ ) [ 0 ω ψ f + ( L d − L q ) ( ω i d − d i q d t ) ] \begin{aligned} \begin{bmatrix}u_\alpha\\u_\beta\end{bmatrix} &=R\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix} +\bm{P(-\theta)}\begin{bmatrix}L_d&0\\0&L_d\end{bmatrix}\frac{d}{dt}(\bm{P(\theta)})\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}+\bm{P(-\theta)}\begin{bmatrix}L_d&0\\0&L_d\end{bmatrix}\bm{P(\theta)}\frac{d}{dt}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}\\ &+\bm{P(-\theta)}\begin{bmatrix}0&-{\omega}L_q\\{\omega}L_q&0\end{bmatrix}\bm{P(\theta)}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}\\ &+\bm{P(-\theta)}\begin{bmatrix}0\\\omegaψ_f+(L_d-L_q)({\omega}i_d-\frac{di_q}{dt})\end{bmatrix} \end{aligned} [uαuβ]=R[iαiβ]+P(θ)[Ld00Ld]dtd(P(θ))[iαiβ]+P(θ)[Ld00Ld]P(θ)dtd[iαiβ]+P(θ)[0ωLqωLq0]P(θ)[iαiβ]+P(θ)[0ωψf+(LdLq)(ωiddtdiq)]
整理一下:
[ u α u β ] = R [ i α i β ] + [ L d 0 0 L d ] d d t [ i α i β ] + P ( − θ ) [ L d 0 0 L d ] d d t ( P ( θ ) ) [ i α i β ] + P ( − θ ) [ 0 − ω L q ω L q 0 ] P ( θ ) [ i α i β ] + P ( − θ ) [ 0 ω ψ f + ( L d − L q ) ( ω i d − d i q d t ) ] \begin{aligned} \begin{bmatrix}u_\alpha\\u_\beta\end{bmatrix} &=R\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}+\begin{bmatrix}L_d&0\\0&L_d\end{bmatrix}\frac{d}{dt}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}\\ &+\bm{P(-\theta)}\begin{bmatrix}L_d&0\\0&L_d\end{bmatrix}\frac{d}{dt}(\bm{P(\theta)})\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}\\ &+\bm{P(-\theta)}\begin{bmatrix}0&-{\omega}L_q\\{\omega}L_q&0\end{bmatrix}\bm{P(\theta)}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}\\ &+\bm{P(-\theta)}\begin{bmatrix}0\\\omegaψ_f+(L_d-L_q)({\omega}i_d-\frac{di_q}{dt})\end{bmatrix} \end{aligned} [uαuβ]=R[iαiβ]+[Ld00Ld]dtd[iαiβ]+P(θ)[Ld00Ld]dtd(P(θ))[iαiβ]+P(θ)[0ωLqωLq0]P(θ)[iαiβ]+P(θ)[0ωψf+(LdLq)(ωiddtdiq)]
进一步利用旋转矩阵的性质: d P ( θ ) d t = d θ d t P ( θ + π 2 ) = [ 0 ω − ω 0 ] P ( θ ) \bm{\frac{dP(\theta)}{dt}}=\frac{d\theta}{dt}\bm{P(\theta+\frac{\pi}{2})}=\begin{bmatrix}0&\omega\\-\omega&0\end{bmatrix}\bm{P(\theta)} dtdP(θ)=dtdθP(θ+2π)=[0ωω0]P(θ)上式进一步化简为:
[ u α u β ] = R [ i α i β ] + [ L d 0 0 L d ] d d t [ i α i β ] + P ( − θ ) [ L d 0 0 L d ] [ 0 ω − ω 0 ] P ( θ ) [ i α i β ] + P ( − θ ) [ 0 − ω L q ω L q 0 ] P ( θ ) [ i α i β ] + P ( − θ ) [ 0 ω ψ f + ( L d − L q ) ( ω i d − d i q d t ) ] \begin{aligned} \begin{bmatrix}u_\alpha\\u_\beta\end{bmatrix} &=R\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}+\begin{bmatrix}L_d&0\\0&L_d\end{bmatrix}\frac{d}{dt}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}\\ &+\bm{P(-\theta)}\begin{bmatrix}L_d&0\\0&L_d\end{bmatrix}\begin{bmatrix}0&\omega\\-\omega&0\end{bmatrix}\bm{P(\theta)}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}\\ &+\bm{P(-\theta)}\begin{bmatrix}0&-{\omega}L_q\\{\omega}L_q&0\end{bmatrix}\bm{P(\theta)}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}\\ &+\bm{P(-\theta)}\begin{bmatrix}0\\\omegaψ_f+(L_d-L_q)({\omega}i_d-\frac{di_q}{dt})\end{bmatrix} \end{aligned} [uαuβ]=R[iαiβ]+[Ld00Ld]dtd[iαiβ]+P(θ)[Ld00Ld][0ωω0]P(θ)[iαiβ]+P(θ)[0ωLqωLq0]P(θ)[iαiβ]+P(θ)[0ωψf+(LdLq)(ωiddtdiq)]
整理合并:
[ u α u β ] = R [ i α i β ] + [ L d 0 0 L d ] d d t [ i α i β ] + P ( − θ ) [ 0 ω ( L d − L q ) − ω ( L d − L q ) 0 ] P ( θ ) [ i α i β ] + P ( − θ ) [ 0 ω ψ f + ( L d − L q ) ( ω i d − d i q d t ) ] \begin{aligned} \begin{bmatrix}u_\alpha\\u_\beta\end{bmatrix} &=R\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}+\begin{bmatrix}L_d&0\\0&L_d\end{bmatrix}\frac{d}{dt}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}\\ &+\bm{P(-\theta)}\begin{bmatrix}0&{\omega}(L_d-L_q)\\-{\omega}(L_d-L_q)&0\end{bmatrix}\bm{P(\theta)}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}\\ &+\bm{P(-\theta)}\begin{bmatrix}0\\\omegaψ_f+(L_d-L_q)({\omega}i_d-\frac{di_q}{dt})\end{bmatrix} \end{aligned} [uαuβ]=R[iαiβ]+[Ld00Ld]dtd[iαiβ]+P(θ)[0ω(LdLq)ω(LdLq)0]P(θ)[iαiβ]+P(θ)[0ωψf+(LdLq)(ωiddtdiq)]
其中:
P ( − θ ) [ 0 ω ( L d − L q ) − ω ( L d − L q ) 0 ] P ( θ ) = ω ( L d − L q ) P ( − θ ) [ 0 1 − 1 0 ] P ( θ ) = ω ( L d − L q ) P ( − θ ) P ( π 2 ) P ( θ ) = ω ( L d − L q ) P ( π 2 ) P ( − θ ) P ( θ ) = ω ( L d − L q ) P ( π 2 ) = [ 0 ω ( L d − L q ) − ω ( L d − L q ) 0 ] \begin{aligned} &\bm{P(-\theta)}\begin{bmatrix}0&{\omega}(L_d-L_q)\\-{\omega}(L_d-L_q)&0\end{bmatrix}\bm{P(\theta)}\\ &={\omega}(L_d-L_q)\bm{P(-\theta)}\begin{bmatrix}0&1\\-1&0\end{bmatrix}\bm{P(\theta)}\\ &={\omega}(L_d-L_q)\bm{P(-\theta)P(\frac{\pi}{2})P(\theta)}={\omega}(L_d-L_q)\bm{P(\frac{\pi}{2})P(-\theta)P(\theta)}\\ &={\omega}(L_d-L_q)\bm{P(\frac{\pi}{2})}=\begin{bmatrix}0&{\omega}(L_d-L_q)\\-{\omega}(L_d-L_q)&0\end{bmatrix} \end{aligned} P(θ)[0ω(LdLq)ω(LdLq)0]P(θ)=ω(LdLq)P(θ)[0110]P(θ)=ω(LdLq)P(θ)P(2π)P(θ)=ω(LdLq)P(2π)P(θ)P(θ)=ω(LdLq)P(2π)=[0ω(LdLq)ω(LdLq)0]

最后一部分:
P ( − θ ) [ 0 ω ψ f + ( L d − L q ) ( ω i d − d i q d t ) ] = [ c o s θ − s i n θ s i n θ c o s θ ] [ 0 ω ψ f + ( L d − L q ) ( ω i d − d i q d t ) ] = ( ω ψ f + ( L d − L q ) ( ω i d − d i q d t ) ) [ − s i n θ c o s θ ] \begin{aligned} &\bm{P(-\theta)}\begin{bmatrix}0\\\omegaψ_f+(L_d-L_q)({\omega}i_d-\frac{di_q}{dt})\end{bmatrix}\\ &=\begin{bmatrix}cos\theta&-sin\theta\\sin\theta&cos\theta\end{bmatrix}\begin{bmatrix}0\\\omegaψ_f+(L_d-L_q)({\omega}i_d-\frac{di_q}{dt})\end{bmatrix}\\ &=(\omegaψ_f+(L_d-L_q)({\omega}i_d-\frac{di_q}{dt}))\begin{bmatrix}-sin\theta\\cos\theta\end{bmatrix} \end{aligned} P(θ)[0ωψf+(LdLq)(ωiddtdiq)]=[cosθsinθsinθcosθ][0ωψf+(LdLq)(ωiddtdiq)]=(ωψf+(LdLq)(ωiddtdiq))[sinθcosθ]
α β \alpha\beta αβ坐标混合电压方程完整形式:
[ u α u β ] = R [ i α i β ] + [ L d 0 0 L d ] d d t [ i α i β ] + [ 0 ω ( L d − L q ) − ω ( L d − L q ) 0 ] [ i α i β ] + [ E α E β ] \begin{aligned} \begin{bmatrix}u_\alpha\\u_\beta\end{bmatrix} &=R\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}+\begin{bmatrix}L_d&0\\0&L_d\end{bmatrix}\frac{d}{dt}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}+\begin{bmatrix}0&{\omega}(L_d-L_q)\\-{\omega}(L_d-L_q)&0\end{bmatrix}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}+\begin{bmatrix}E_\alpha\\E_\beta\end{bmatrix} \end{aligned} [uαuβ]=R[iαiβ]+[Ld00Ld]dtd[iαiβ]+[0ω(LdLq)ω(LdLq)0][iαiβ]+[EαEβ]
其中:
[ E α E β ] = ( ω ψ f + ( L d − L q ) ( ω i d − d i q d t ) ) [ − s i n θ c o s θ ] \begin{aligned} \begin{bmatrix}E_\alpha\\E_\beta\end{bmatrix}=(\omegaψ_f+(L_d-L_q)({\omega}i_d-\frac{di_q}{dt}))\begin{bmatrix}-sin\theta\\cos\theta\end{bmatrix} \end{aligned} [EαEβ]=(ωψf+(LdLq)(ωiddtdiq))[sinθcosθ]


总结

以上就是BLDC常用的方程及其推导过程。

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值