文章目录
前言
《锁相环(PLL)电路设计与应用》一书中在P12页用到了两个单音调频波的贝塞尔展开公式,我在想为什么叫做贝塞尔展开,开启来不是一个像傅里叶展开吗公式吗?因此这里绕过贝塞尔展开,我们直接尝试从傅里叶级数的角度求解两个展开问题,不需要贝塞尔函数的前置知识,并且可以从这个具体的问题来认识整数阶的贝塞尔函数:
一、要解决的问题
第一:
c
o
s
(
β
s
i
n
θ
)
cos(\beta sin \theta)
cos(βsinθ)的傅里叶级数
第二:
s
i
n
(
β
s
i
n
θ
)
sin(\beta sin \theta)
sin(βsinθ)的傅里叶级数
二、要用到的积分公式
由于后面有的积分需要计算,所以先引出一些公式,这考虑当
k
≤
n
k\le n
k≤n时,积分:
∫
0
2
π
s
i
n
2
k
θ
[
c
o
s
(
2
n
θ
)
+
i
s
i
n
(
2
n
θ
)
]
d
θ
=
∫
0
2
π
(
e
i
θ
−
e
−
i
θ
2
i
)
2
k
e
i
2
n
θ
d
θ
=
−
i
(
−
1
)
k
2
2
k
∫
0
2
π
(
e
2
i
θ
−
1
)
2
k
e
(
2
k
−
2
n
+
1
)
i
θ
d
e
i
θ
\begin{aligned} &\int_0^{2\pi}sin^{2k}\theta [cos(2n\theta)+isin(2n\theta)]d\theta=\int_0^{2\pi}\left(\frac{e^{i\theta}-e^{-i\theta}}{2i}\right)^{2k} e^{i2n\theta}d\theta=\frac{-i(-1)^k}{2^{2k}}\int_0^{2\pi}\frac{(e^{2i\theta}-1)^{2k}}{e^{(2k-2n+1)i\theta}} de^{i\theta}\\ \end{aligned}
∫02πsin2kθ[cos(2nθ)+isin(2nθ)]dθ=∫02π(2ieiθ−e−iθ)2kei2nθdθ=22k−i(−1)k∫02πe(2k−2n+1)iθ(e2iθ−1)2kdeiθ
将
e
i
θ
e^{i\theta}
eiθ换成复数
z
z
z,则可以通过柯西积分得到它的值,可以注意到:
∫
0
2
π
s
i
n
2
k
θ
[
c
o
s
(
2
n
θ
)
+
i
s
i
n
(
2
n
θ
)
]
d
θ
=
−
i
(
−
1
)
k
2
2
k
∮
(
z
2
−
1
)
2
k
z
2
k
−
2
n
+
1
d
z
=
2
π
(
−
1
)
k
2
2
k
1
2
π
i
∮
(
z
2
−
1
)
2
k
z
2
k
−
2
n
+
1
d
z
=
2
π
(
−
1
)
k
2
2
k
[
(
z
2
+
1
)
2
k
]
(
2
k
−
2
n
)
∣
z
=
0
(
2
k
−
2
n
)
!
=
2
π
(
−
1
)
k
2
2
k
(
−
1
)
n
+
k
C
2
k
k
−
n
(
2
k
−
2
n
)
!
(
2
k
−
2
n
)
!
=
2
π
(
−
1
)
n
2
2
k
(
2
k
)
!
(
k
−
n
)
!
(
k
+
n
)
!
\begin{aligned} &\int_0^{2\pi}sin^{2k}\theta [cos(2n\theta)+isin(2n\theta)]d\theta\\ =&\frac{-i(-1)^k}{2^{2k}}\oint\frac{(z^2-1)^{2k}}{z^{2k-2n+1}} dz=\frac{2\pi(-1)^k}{2^{2k}}\frac1{2\pi i}\oint\frac{(z^2-1)^{2k}}{z^{2k-2n+1}} dz=\frac{2\pi(-1)^k}{2^{2k}}\frac{[(z^2+1)^{2k}]^{(2k-2n)}|_{z=0}}{(2k-2n)!}\\ =&\frac{2\pi(-1)^k}{2^{2k}}\frac{(-1)^{n+k}C_{2k}^{k-n}(2k-2n)!}{(2k-2n)!}\\ =&\frac{2\pi(-1)^n}{2^{2k}}\frac{(2k)!}{(k-n)!(k+n)!}\\ \end{aligned}
===∫02πsin2kθ[cos(2nθ)+isin(2nθ)]dθ22k−i(−1)k∮z2k−2n+1(z2−1)2kdz=22k2π(−1)k2πi1∮z2k−2n+1(z2−1)2kdz=22k2π(−1)k(2k−2n)∣z=022k2π(−1)k(2k−2n)!(−1)n+kC2kk−n(2k−2n)!22k2π(−1)n(k−n)!(k+n)!(2k)!
当
k
<
n
k<n
k<n时,被积分的函数时全纯的,积分为零,这个从上面的公式也可以看出来。
上面的积分两边同时取实部可以看出我们有积分公式:
∫
0
2
π
s
i
n
2
k
θ
c
o
s
(
2
n
θ
)
d
θ
=
2
π
(
−
1
)
n
2
2
k
(
2
k
)
!
(
k
−
n
)
!
(
k
+
n
)
!
⋯
(
1
)
\begin{aligned} &\int_0^{2\pi}sin^{2k}\theta cos(2n\theta)d\theta=\frac{2\pi(-1)^n}{2^{2k}}\frac{(2k)!}{(k-n)!(k+n)!}\cdots(1) \end{aligned}
∫02πsin2kθcos(2nθ)dθ=22k2π(−1)n(k−n)!(k+n)!(2k)!⋯(1)
仿照上面的办法,我们再考虑积分:
∫
0
2
π
s
i
n
2
k
+
1
θ
[
c
o
s
[
(
2
n
+
1
)
θ
]
+
i
s
i
n
[
(
2
n
+
1
)
θ
]
d
θ
=
∫
0
2
π
(
e
i
θ
−
e
−
i
θ
2
i
)
2
k
+
1
e
i
(
2
n
+
1
)
θ
d
θ
=
(
−
1
)
k
2
2
k
+
1
∫
0
2
π
(
e
2
i
θ
−
1
)
2
k
+
1
e
(
2
k
−
2
n
+
1
)
i
θ
d
e
i
θ
=
(
−
1
)
k
+
1
2
π
i
2
2
k
+
1
1
2
π
i
∮
(
z
2
−
1
)
2
k
+
1
z
2
k
−
2
n
+
1
d
z
=
(
−
1
)
k
+
1
2
π
i
2
2
k
+
1
(
−
1
)
n
+
k
+
1
C
2
k
+
1
k
−
n
(
2
k
−
2
n
)
!
(
2
k
−
2
n
)
!
=
(
−
1
)
n
2
π
i
2
2
k
+
1
(
2
k
+
1
)
!
(
k
−
n
)
!
(
k
+
n
+
1
)
!
\begin{aligned} &\int_0^{2\pi}sin^{2k+1}\theta [cos[(2n+1)\theta]+isin[(2n+1)\theta]d\theta=\int_0^{2\pi}\left(\frac{e^{i\theta}-e^{-i\theta}}{2i}\right)^{2k+1} e^{i(2n+1)\theta}d\theta\\ =&\frac{(-1)^k}{2^{2k+1}}\int_0^{2\pi}\frac{(e^{2i\theta}-1)^{2k+1}}{e^{(2k-2n+1)i\theta}} de^{i\theta}\\ =&\frac{(-1)^{k+1}2\pi i}{2^{2k+1}}\frac1{2\pi i}\oint \frac{(z^2-1)^{2k+1}}{z^{2k-2n+1}} dz=\frac{(-1)^{k+1}2\pi i}{2^{2k+1}}\frac{(-1)^{n+k+1}C_{2k+1}^{k-n}(2k-2n)!}{(2k-2n)!}\\ =&\frac{(-1)^n2\pi i}{2^{2k+1}}\frac{(2k+1)!}{(k-n)!(k+n+1)!} \end{aligned}
===∫02πsin2k+1θ[cos[(2n+1)θ]+isin[(2n+1)θ]dθ=∫02π(2ieiθ−e−iθ)2k+1ei(2n+1)θdθ22k+1(−1)k∫02πe(2k−2n+1)iθ(e2iθ−1)2k+1deiθ22k+1(−1)k+12πi2πi1∮z2k−2n+1(z2−1)2k+1dz=22k+1(−1)k+12πi(2k−2n)!(−1)n+k+1C2k+1k−n(2k−2n)!22k+1(−1)n2πi(k−n)!(k+n+1)!(2k+1)!
两边取虚部得到公式:
∫
0
2
π
s
i
n
2
k
+
1
θ
s
i
n
[
(
2
n
+
1
)
θ
d
θ
=
(
−
1
)
n
2
π
2
2
k
+
1
(
2
k
+
1
)
!
(
k
−
n
)
!
(
k
+
n
+
1
)
!
⋯
(
2
)
\begin{aligned} &\int_0^{2\pi}sin^{2k+1}\theta sin[(2n+1)\theta d\theta=\frac{(-1)^{n}2\pi}{2^{2k+1}}\frac{(2k+1)!}{(k-n)!(k+n+1)!}\cdots(2) \end{aligned}
∫02πsin2k+1θsin[(2n+1)θdθ=22k+1(−1)n2π(k−n)!(k+n+1)!(2k+1)!⋯(2)
三、 c o s ( β s i n θ ) cos(\beta sin\theta) cos(βsinθ)的傅里叶系数
这个函数是一个偶函数,因此只存在偶数项,我们来使用系数求解公式:
A
2
n
(
β
)
=
1
π
∫
0
2
π
c
o
s
(
β
s
i
n
θ
)
c
o
s
(
2
n
θ
)
d
θ
\begin{aligned} A_{2n}(\beta)=&\frac1{\pi}\int_0^{2\pi}cos(\beta sin\theta)cos(2n\theta)d\theta \end{aligned}
A2n(β)=π1∫02πcos(βsinθ)cos(2nθ)dθ
注意泰勒级数:
c
o
s
(
β
s
i
n
θ
)
=
∑
k
=
0
∞
(
−
1
)
k
s
i
n
2
k
θ
(
2
k
)
!
β
2
k
\begin{aligned} cos(\beta sin\theta)=\sum_{k=0}^\infty (-1)^k\frac{sin^{2k}\theta}{(2k)!}\beta^{2k} \end{aligned}
cos(βsinθ)=k=0∑∞(−1)k(2k)!sin2kθβ2k
于是我们得到傅里叶系数的积分公式:
A
2
n
(
β
)
=
1
π
∫
0
2
π
c
o
s
(
β
s
i
n
θ
)
c
o
s
(
2
n
θ
)
d
θ
=
1
π
∑
k
=
0
∞
(
−
1
)
k
β
2
k
(
2
k
)
!
∫
0
2
π
s
i
n
2
k
θ
c
o
s
(
2
n
θ
)
d
θ
=
1
π
∑
k
=
0
∞
(
−
1
)
k
β
2
k
(
2
k
)
!
2
π
(
(
−
1
)
n
)
2
2
k
(
2
k
)
!
(
k
−
n
)
!
(
k
+
n
)
!
=
2
∑
k
=
0
∞
(
−
1
)
k
+
n
(
k
−
n
)
!
(
k
+
n
)
!
(
β
2
)
2
k
=
2
∑
k
=
0
∞
(
−
1
)
k
(
k
)
!
(
k
+
2
n
)
!
(
β
2
)
2
k
+
2
n
\begin{aligned} A_{2n}(\beta)=&\frac1{\pi}\int_0^{2\pi}cos(\beta sin\theta)cos(2n\theta)d\theta\\ =&\frac1{\pi} \sum_{k=0}^\infty (-1)^k\frac{\beta^{2k}}{(2k)!}\int_0^{2\pi}sin^{2k}\theta cos(2n\theta)d\theta\\ =&\frac1{\pi} \sum_{k=0}^\infty (-1)^k\frac{\beta^{2k}}{(2k)!}\frac{2\pi((-1)^n)}{2^{2k}}\frac{(2k)!}{(k-n)!(k+n)!}\\ =&2 \sum_{k=0}^\infty \frac{ (-1)^{k+n}}{(k-n)!(k+n)!} \left(\frac{\beta}{2}\right)^{2k}\\ =&2 \sum_{k=0}^\infty \frac{ (-1)^k}{(k)!(k+2n)!} \left(\frac{\beta}{2}\right)^{2k+2n}\\ \end{aligned}
A2n(β)=====π1∫02πcos(βsinθ)cos(2nθ)dθπ1k=0∑∞(−1)k(2k)!β2k∫02πsin2kθcos(2nθ)dθπ1k=0∑∞(−1)k(2k)!β2k22k2π((−1)n)(k−n)!(k+n)!(2k)!2k=0∑∞(k−n)!(k+n)!(−1)k+n(2β)2k2k=0∑∞(k)!(k+2n)!(−1)k(2β)2k+2n
上面的最后一步利用了
k
<
n
k<n
k<n时
(
k
−
n
)
!
=
∞
(k-n)!=\infty
(k−n)!=∞的事实,并做了下标变换。
四、 s i n ( β s i n θ ) sin(\beta sin \theta) sin(βsinθ)的傅里叶系数
这是一个奇函数,因此只存在奇数项,我们来使用系数求解公式:
A
2
n
+
1
(
β
)
=
1
π
∫
0
2
π
s
i
n
(
β
s
i
n
θ
)
s
i
n
[
(
2
n
+
1
)
θ
]
d
θ
\begin{aligned} A_{2n+1}(\beta)=&\frac1{\pi}\int_0^{2\pi}sin(\beta sin\theta)sin[(2n+1)\theta]d\theta \end{aligned}
A2n+1(β)=π1∫02πsin(βsinθ)sin[(2n+1)θ]dθ
注意泰勒级数:
s
i
n
(
β
s
i
n
θ
)
=
∑
k
=
0
∞
(
−
1
)
k
s
i
n
2
k
+
1
θ
(
2
k
+
1
)
!
β
2
k
+
1
\begin{aligned} sin(\beta sin\theta)=\sum_{k=0}^\infty (-1)^k\frac{sin^{2k+1}\theta}{(2k+1)!}\beta^{2k+1} \end{aligned}
sin(βsinθ)=k=0∑∞(−1)k(2k+1)!sin2k+1θβ2k+1
所以对应的傅里叶系数的积分公式如下:
A
2
n
+
1
(
β
)
=
1
π
∫
0
2
π
s
i
n
(
β
s
i
n
θ
)
s
i
n
[
(
2
n
+
1
)
θ
]
d
θ
=
1
π
∑
k
=
0
∞
(
−
1
)
k
β
2
k
+
1
(
2
k
+
1
)
!
∫
0
2
π
s
i
n
2
k
+
1
θ
s
i
n
[
(
2
n
+
1
)
θ
d
θ
=
1
π
∑
k
=
0
∞
(
−
1
)
k
β
2
k
+
1
(
2
k
+
1
)
!
(
−
1
)
n
2
π
2
2
k
+
1
(
2
k
+
1
)
!
(
k
−
n
)
!
(
k
+
n
+
1
)
!
=
2
∑
k
=
0
∞
(
−
1
)
k
+
n
(
k
−
n
)
!
(
k
+
n
+
1
)
!
(
β
2
)
2
k
+
1
=
2
∑
k
=
0
∞
(
−
1
)
k
k
!
(
k
+
2
n
+
1
)
!
(
β
2
)
2
k
+
2
n
+
1
\begin{aligned} A_{2n+1}(\beta)=&\frac1{\pi}\int_0^{2\pi} sin(\beta sin\theta) sin[(2n+1)\theta]d\theta\\ =&\frac1{\pi} \sum_{k=0}^\infty (-1)^k\frac{\beta^{2k+1}}{(2k+1)!} \int_0^{2\pi} sin^{2k+1}\theta sin[(2n+1)\theta d\theta\\ =&\frac1{\pi} \sum_{k=0}^\infty (-1)^k\frac{\beta^{2k+1}}{(2k+1)!} \frac{(-1)^{n}2\pi}{2^{2k+1}}\frac{(2k+1)!}{(k-n)!(k+n+1)!}\\ =&2 \sum_{k=0}^\infty \frac{(-1)^{k+n}}{(k-n)!(k+n+1)!} \left(\frac{\beta}{2}\right)^{2k+1}\\ =&2 \sum_{k=0}^\infty \frac{(-1)^{k}}{k!(k+2n+1)!} \left(\frac{\beta}{2}\right)^{2k+2n+1} \end{aligned}
A2n+1(β)=====π1∫02πsin(βsinθ)sin[(2n+1)θ]dθπ1k=0∑∞(−1)k(2k+1)!β2k+1∫02πsin2k+1θsin[(2n+1)θdθπ1k=0∑∞(−1)k(2k+1)!β2k+122k+1(−1)n2π(k−n)!(k+n+1)!(2k+1)!2k=0∑∞(k−n)!(k+n+1)!(−1)k+n(2β)2k+12k=0∑∞k!(k+2n+1)!(−1)k(2β)2k+2n+1
五、认识整数阶贝塞尔函数
我们先把上述两个函数的傅里叶系数整理在下面:
A
2
n
(
β
)
=
2
∑
k
=
0
∞
(
−
1
)
k
(
k
)
!
(
k
+
2
n
)
!
(
β
2
)
2
k
+
2
n
A
2
n
+
1
(
β
)
=
2
∑
k
=
0
∞
(
−
1
)
k
k
!
(
k
+
2
n
+
1
)
!
(
β
2
)
2
k
+
2
n
+
1
\begin{aligned} A_{2n}(\beta)=&2 \sum_{k=0}^\infty \frac{ (-1)^k}{(k)!(k+2n)!} \left(\frac{\beta}{2}\right)^{2k+2n}\\ A_{2n+1}(\beta)=&2 \sum_{k=0}^\infty \frac{(-1)^{k}}{k!(k+2n+1)!} \left(\frac{\beta}{2}\right)^{2k+2n+1} \end{aligned}
A2n(β)=A2n+1(β)=2k=0∑∞(k)!(k+2n)!(−1)k(2β)2k+2n2k=0∑∞k!(k+2n+1)!(−1)k(2β)2k+2n+1
如果我们定义一个函数:
J
m
(
β
)
=
∑
k
=
0
∞
(
−
1
)
k
(
k
)
!
(
k
+
m
)
!
(
β
2
)
2
k
+
m
\begin{aligned} J_{m}(\beta)=& \sum_{k=0}^\infty \frac{ (-1)^k}{(k)!(k+m)!} \left(\frac{\beta}{2}\right)^{2k+m} \end{aligned}
Jm(β)=k=0∑∞(k)!(k+m)!(−1)k(2β)2k+m
那么两个系数可以分别简记为:
A
2
n
(
β
)
=
2
J
2
n
(
β
)
A
2
n
+
1
(
β
)
=
2
J
2
n
+
1
(
β
)
\begin{aligned} A_{2n}(\beta)=&2 J_{2n}(\beta)\\ A_{2n+1}(\beta)=&2 J_{2n+1}(\beta) \end{aligned}
A2n(β)=A2n+1(β)=2J2n(β)2J2n+1(β)
这里我们定义的函数
J
m
(
β
)
J_{m}(\beta)
Jm(β)就叫做贝塞尔函数了。
六、 c o s ( β s i n θ ) cos(\beta sin\theta) cos(βsinθ)以及 s i n ( β s i n θ ) sin(\beta sin \theta) sin(βsinθ)的傅里叶展开(贝塞尔展开)
现在我们已经有了傅里叶系数了,我们来按照常规做法把它们展开吧!
c
o
s
(
β
s
i
n
θ
)
=
J
0
(
β
)
+
2
∑
n
=
0
∞
J
2
n
(
β
)
c
o
s
(
2
n
θ
)
s
i
n
(
β
s
i
n
θ
)
=
2
∑
n
=
0
∞
J
2
n
+
1
(
β
)
s
i
n
[
(
2
n
+
1
)
θ
]
\begin{aligned} cos(\beta sin\theta)=&J_0(\beta)+2 \sum_{n=0}^{\infty} J_{2n}(\beta)cos(2n\theta)\\ sin(\beta sin \theta)=&2 \sum_{n=0}^{\infty} J_{2n+1}(\beta)sin[(2n+1)\theta] \end{aligned}
cos(βsinθ)=sin(βsinθ)=J0(β)+2n=0∑∞J2n(β)cos(2nθ)2n=0∑∞J2n+1(β)sin[(2n+1)θ]
七、其他尝试方向的附加产物——两个组合恒等式
如果我们采用下面的办法则可以得到两个组合恒等式:
利用:
c
o
s
(
2
n
θ
)
=
∑
l
=
0
n
(
−
1
)
l
C
2
n
2
l
c
o
s
2
n
−
2
l
θ
s
i
n
2
l
θ
\begin{aligned} cos(2n\theta)=&\sum_{l=0}^{n}(-1)^lC_{2n}^{2l}cos^{2n-2l}\theta sin^{2l}\theta \end{aligned}
cos(2nθ)=l=0∑n(−1)lC2n2lcos2n−2lθsin2lθ
我们把傅里叶系数的积分公式写成:
A
2
n
(
β
)
=
1
π
∫
0
2
π
c
o
s
(
β
s
i
n
θ
)
c
o
s
(
2
n
θ
)
d
θ
=
1
π
∫
0
2
π
[
∑
k
=
0
∞
(
−
1
)
k
s
i
n
2
k
θ
(
2
k
)
!
β
2
k
]
[
∑
l
=
0
n
(
−
1
)
l
C
2
n
2
l
c
o
s
2
n
−
2
l
θ
s
i
n
2
l
θ
]
d
θ
=
1
π
∑
k
=
0
∞
∑
l
=
0
n
(
−
1
)
k
+
l
C
2
n
2
l
(
2
k
)
!
β
2
k
∫
0
2
π
c
o
s
2
n
−
2
l
θ
s
i
n
2
l
+
2
k
θ
d
θ
\begin{aligned} A_{2n}(\beta)=&\frac1{\pi}\int_0^{2\pi}cos(\beta sin\theta)cos(2n\theta)d\theta\\ =&\frac1{\pi}\int_0^{2\pi} \left[\sum_{k=0}^\infty (-1)^k\frac{sin^{2k}\theta}{(2k)!}\beta^{2k}\right] \left[\sum_{l=0}^{n}(-1)^lC_{2n}^{2l}cos^{2n-2l}\theta sin^{2l}\theta\right]d\theta\\ =&\frac1{\pi} \sum_{k=0}^\infty \sum_{l=0}^{n} (-1)^{k+l} \frac{C_{2n}^{2l}}{(2k)!}\beta^{2k} \int_0^{2\pi}cos^{2n-2l}\theta sin^{2l+2k}\theta d\theta \end{aligned}
A2n(β)===π1∫02πcos(βsinθ)cos(2nθ)dθπ1∫02π[k=0∑∞(−1)k(2k)!sin2kθβ2k][l=0∑n(−1)lC2n2lcos2n−2lθsin2lθ]dθπ1k=0∑∞l=0∑n(−1)k+l(2k)!C2n2lβ2k∫02πcos2n−2lθsin2l+2kθdθ
利用计算公式见一个一个特别地参数积分I(p,q):
I
(
p
,
q
)
=
∫
0
2
π
c
o
s
2
p
θ
s
i
n
2
q
θ
d
θ
=
2
π
2
2
p
+
2
q
(
2
p
)
!
(
2
q
)
!
p
!
(
p
+
q
)
!
q
!
\begin{aligned} I(p,q)=\int_0^{2\pi} cos^{2p}\theta sin^{2q}\theta d\theta=\frac{2\pi}{2^{2p+2q}} \frac{(2p)!(2q)!}{p!(p+q)!q!} \end{aligned}
I(p,q)=∫02πcos2pθsin2qθdθ=22p+2q2πp!(p+q)!q!(2p)!(2q)!
A
2
n
(
β
)
=
1
π
∑
k
=
0
∞
∑
l
=
0
n
(
−
1
)
k
+
l
C
2
n
2
l
(
2
k
)
!
β
2
k
I
(
n
−
l
,
l
+
k
)
=
2
∑
k
=
0
∞
(
−
1
)
k
(
β
2
)
2
k
(
2
n
)
!
2
2
n
(
2
k
)
!
(
n
+
k
)
!
∑
l
=
0
n
(
−
1
)
l
[
2
(
l
+
k
)
]
!
(
2
l
)
!
(
n
−
l
)
!
(
l
+
k
)
!
\begin{aligned} A_{2n}(\beta)=&\frac1{\pi} \sum_{k=0}^\infty \sum_{l=0}^{n} (-1)^{k+l} \frac{C_{2n}^{2l}}{(2k)!}\beta^{2k} I(n-l,l+k)\\ =&2\sum_{k=0}^\infty (-1)^{k} \left(\frac\beta 2\right)^{2k}\frac{(2n)!}{2^{2n}(2k)!(n+k)!} \sum_{l=0}^{n}\frac{(-1)^{l}[2(l+k)]!}{(2l)!(n-l)!(l+k)!} \end{aligned}
A2n(β)==π1k=0∑∞l=0∑n(−1)k+l(2k)!C2n2lβ2kI(n−l,l+k)2k=0∑∞(−1)k(2β)2k22n(2k)!(n+k)!(2n)!l=0∑n(2l)!(n−l)!(l+k)!(−1)l[2(l+k)]!
要使
A
2
n
(
β
)
=
2
J
2
n
(
β
)
A_{2n}(\beta)=2J_{2n}(\beta)
A2n(β)=2J2n(β),我们必定就得到了恒等式:
∑
l
=
0
n
(
−
1
)
l
[
2
(
l
+
k
)
]
!
(
2
l
)
!
(
n
−
l
)
!
(
l
+
k
)
!
=
(
−
1
)
n
2
2
n
(
2
k
)
!
(
2
n
)
!
(
k
−
n
)
!
\begin{aligned} \sum_{l=0}^{n}\frac{(-1)^{l}[2(l+k)]!}{(2l)!(n-l)!(l+k)!}=\frac{(-1)^n2^{2n}(2k)!}{(2n)!(k-n)!} \end{aligned}
l=0∑n(2l)!(n−l)!(l+k)!(−1)l[2(l+k)]!=(2n)!(k−n)!(−1)n22n(2k)!
利用:
s
i
n
[
(
2
n
+
1
)
θ
]
=
∑
l
=
0
n
(
−
1
)
l
C
2
n
+
1
2
l
+
1
c
o
s
2
n
−
2
l
θ
s
i
n
2
l
+
1
θ
\begin{aligned} sin[(2n+1)\theta]=&\sum_{l=0}^{n}(-1)^lC_{2n+1}^{2l+1}cos^{2n-2l}\theta sin^{2l+1}\theta \end{aligned}
sin[(2n+1)θ]=l=0∑n(−1)lC2n+12l+1cos2n−2lθsin2l+1θ
我们把傅里叶系数的积分公式写成:
A
2
n
+
1
(
β
)
=
1
π
∫
0
2
π
s
i
n
(
β
s
i
n
θ
)
s
i
n
[
(
2
n
+
1
)
θ
]
d
θ
=
1
π
∫
0
2
π
[
∑
k
=
0
∞
(
−
1
)
k
s
i
n
2
k
+
1
θ
(
2
k
+
1
)
!
β
2
k
+
1
]
[
∑
l
=
0
n
(
−
1
)
l
C
2
n
+
1
2
l
+
1
c
o
s
2
n
−
2
l
θ
s
i
n
2
l
+
1
θ
]
d
θ
=
1
π
∑
k
=
0
∞
∑
l
=
0
n
(
−
1
)
k
+
l
C
2
n
+
1
2
l
+
1
(
2
k
+
1
)
!
β
2
k
+
1
∫
0
2
π
c
o
s
2
n
−
2
l
θ
s
i
n
2
l
+
2
k
+
2
θ
d
θ
=
2
∑
k
=
0
∞
∑
l
=
0
n
(
−
1
)
k
+
l
C
2
n
+
1
2
l
+
1
(
2
k
+
1
)
!
β
2
k
+
1
1
2
2
n
+
2
k
+
2
(
2
n
−
2
l
)
!
(
2
l
+
2
k
+
2
)
!
(
n
−
l
)
!
(
n
+
k
+
1
)
!
(
l
+
k
+
1
)
!
=
2
∑
k
=
0
∞
(
−
1
)
k
(
β
2
)
2
k
+
1
(
2
n
+
1
)
!
2
2
n
+
1
(
2
k
+
1
)
!
(
n
+
k
+
1
)
!
∑
l
=
0
n
(
−
1
)
l
(
2
l
+
2
k
+
2
)
!
(
2
l
+
1
)
!
(
n
−
l
)
!
(
l
+
k
+
1
)
!
\begin{aligned} A_{2n+1}(\beta)=&\frac1{\pi}\int_0^{2\pi} sin(\beta sin\theta) sin[(2n+1)\theta]d\theta\\ =&\frac1{\pi}\int_0^{2\pi} \left[\sum_{k=0}^\infty (-1)^k\frac{sin^{2k+1}\theta}{(2k+1)!}\beta^{2k+1}\right] \left[\sum_{l=0}^{n}(-1)^lC_{2n+1}^{2l+1}cos^{2n-2l}\theta sin^{2l+1}\theta\right]d\theta\\ =&\frac1{\pi} \sum_{k=0}^\infty \sum_{l=0}^{n} (-1)^{k+l} \frac{C_{2n+1}^{2l+1}}{(2k+1)!}\beta^{2k+1} \int_0^{2\pi}cos^{2n-2l}\theta sin^{2l+2k+2}\theta d\theta\\ =&2 \sum_{k=0}^\infty \sum_{l=0}^{n} (-1)^{k+l} \frac{C_{2n+1}^{2l+1}}{(2k+1)!}\beta^{2k+1} \frac{1}{2^{2n+2k+2}} \frac{(2n-2l)!(2l+2k+2)!}{(n-l)!(n+k+1)!(l+k+1)!}\\ =&2 \sum_{k=0}^\infty (-1)^{k} \left( \frac{\beta}{2}\right)^{2k+1}\frac{(2n+1)!}{2^{2n+1}(2k+1)!(n+k+1)!} \sum_{l=0}^{n} \frac{(-1)^l(2l+2k+2)!}{(2l+1)!(n-l)!(l+k+1)!} \end{aligned}
A2n+1(β)=====π1∫02πsin(βsinθ)sin[(2n+1)θ]dθπ1∫02π[k=0∑∞(−1)k(2k+1)!sin2k+1θβ2k+1][l=0∑n(−1)lC2n+12l+1cos2n−2lθsin2l+1θ]dθπ1k=0∑∞l=0∑n(−1)k+l(2k+1)!C2n+12l+1β2k+1∫02πcos2n−2lθsin2l+2k+2θdθ2k=0∑∞l=0∑n(−1)k+l(2k+1)!C2n+12l+1β2k+122n+2k+21(n−l)!(n+k+1)!(l+k+1)!(2n−2l)!(2l+2k+2)!2k=0∑∞(−1)k(2β)2k+122n+1(2k+1)!(n+k+1)!(2n+1)!l=0∑n(2l+1)!(n−l)!(l+k+1)!(−1)l(2l+2k+2)!
要使
A
2
n
+
1
(
β
)
=
2
J
2
n
+
1
(
β
)
A_{2n+1}(\beta)=2 J_{2n+1}(\beta)
A2n+1(β)=2J2n+1(β),我们必定就得到了恒等式:
∑
l
=
0
n
(
−
1
)
l
(
2
l
+
2
k
+
2
)
!
(
2
l
+
1
)
!
(
n
−
l
)
!
(
l
+
k
+
1
)
!
=
(
−
1
)
n
2
2
n
+
1
(
2
k
+
1
)
!
(
2
n
+
1
)
!
(
k
−
n
)
!
\begin{aligned} \sum_{l=0}^{n} \frac{(-1)^l(2l+2k+2)!}{(2l+1)!(n-l)!(l+k+1)!}=\frac{(-1)^n2^{2n+1}(2k+1)!}{(2n+1)!(k-n)!} \end{aligned}
l=0∑n(2l+1)!(n−l)!(l+k+1)!(−1)l(2l+2k+2)!=(2n+1)!(k−n)!(−1)n22n+1(2k+1)!
总结
通过努力,我们成功地从傅里叶级数分解的角度解释了调频波中使用的贝塞尔展开式,并且最后介绍了先前未能成功证明展开式的思路,反而我们还附带地取得了两个组合恒等式,收获不小。