一个特别的参数积分I(p,q)

文章介绍了积分I(p,q)的定义,展示了其对称性质,并给出了一组递推公式用于计算特定情况下p和q为非负整数的积分值。最后,通过递推关系得出I(p,q)的闭合形式表达式,涉及阶乘和指数运算。
摘要由CSDN通过智能技术生成


前言

这里计算一个积分,方便在推导中使用


一、 I ( p , q ) I(p,q) I(p,q)的定义

这个积分没有特别的名字,我们暂且用 I ( p , q ) I(p,q) I(p,q)来称呼它,它的定义是
I ( p , q ) = ∫ 0 2 π c o s 2 p θ s i n 2 q θ d θ \begin{aligned} I(p,q)=\int_0^{2\pi} cos^{2p}\theta sin^{2q}\theta d\theta \end{aligned} I(p,q)=02πcos2pθsin2qθdθ
我们只讨论 p , q p,q p,q为非负整数的特殊情况。

二、 I ( p , q ) I(p,q) I(p,q)的对称性

首先它具有对称性,在积分中如果做替换: θ → θ + π / 2 \theta\rightarrow\theta+\pi/2 θθ+π/2,可以看出这一点。我们写成:
I ( p , q ) = I ( q , p ) I(p,q)=I(q,p) I(p,q)=I(q,p)

三、 I ( p , q ) I(p,q) I(p,q)的递推公式

由于 p , q p,q p,q是对称的,不妨设 p ≤ q p\le q pq
I ( p , q ) = ∫ 0 2 π c o s 2 p θ s i n 2 q θ d θ = 1 2 q + 1 ∫ 0 2 π c o s 2 p − 1 θ d ( s i n 2 q + 1 θ ) = − 1 2 q + 1 ∫ 0 2 π s i n 2 q + 1 θ d ( c o s 2 p − 1 θ ) = 2 p − 1 2 q + 1 ∫ 0 2 π c o s 2 p − 2 θ s i n 2 q + 2 θ d θ = 2 p − 1 2 q + 1 I ( p − 1 , q + 1 ) \begin{aligned} I(p,q)=&\int_0^{2\pi} cos^{2p}\theta sin^{2q}\theta d\theta =\frac1{2q+1}\int_0^{2\pi} cos^{2p-1}\theta d(sin^{2q+1}\theta)\\ =&-\frac1{2q+1}\int_0^{2\pi} sin^{2q+1}\theta d(cos^{2p-1}\theta) =\frac{2p-1}{2q+1}\int_0^{2\pi} cos^{2p-2}\theta sin^{2q+2}\theta d\theta\\ =&\frac{2p-1}{2q+1}I(p-1,q+1) \end{aligned} I(p,q)===02πcos2pθsin2qθdθ=2q+1102πcos2p1θd(sin2q+1θ)2q+1102πsin2q+1θd(cos2p1θ)=2q+12p102πcos2p2θsin2q+2θdθ2q+12p1I(p1,q+1)
所以第一个递推公式就是:
I ( p , q ) = 2 p − 1 2 q + 1 I ( p − 1 , q + 1 ) … … ( 1 ) \begin{aligned} I(p,q)=\frac{2p-1}{2q+1}I(p-1,q+1)……(1) \end{aligned} I(p,q)=2q+12p1I(p1,q+1)……(1)
显然利用上式,求 I ( p , q ) I(p,q) I(p,q)的问题可以归结为计算 I ( 0 , r ) I(0,r) I(0,r)的问题:
I ( 0 , r ) = ∫ 0 2 π s i n 2 r θ d θ = − ∫ 0 2 π s i n 2 r − 1 θ d c o s θ = ∫ 0 2 π c o s θ d ( s i n 2 r − 1 θ ) = ( 2 r − 1 ) ∫ 0 2 π s i n 2 r − 2 θ c o s 2 θ d θ = ( 2 r − 1 ) ∫ 0 2 π s i n 2 r − 2 θ d θ − ( 2 r − 1 ) ∫ 0 2 π s i n 2 r θ d θ = ( 2 r − 1 ) I ( 0 , r − 1 ) − ( 2 r − 1 ) I ( 0 , r ) \begin{aligned} I(0,r)=&\int_0^{2\pi} sin^{2r}\theta d\theta=-\int_0^{2\pi} sin^{2r-1}\theta dcos\theta=\int_0^{2\pi} cos\theta d(sin^{2r-1}\theta)\\ =&(2r-1)\int_0^{2\pi} sin^{2r-2}\theta cos^2\theta d\theta\\ =&(2r-1)\int_0^{2\pi} sin^{2r-2}\theta d\theta-(2r-1)\int_0^{2\pi} sin^{2r}\theta d\theta\\ =&(2r-1)I(0,r-1)-(2r-1)I(0,r) \end{aligned} I(0,r)====02πsin2rθdθ=02πsin2r1θdcosθ=02πcosθd(sin2r1θ)(2r1)02πsin2r2θcos2θdθ(2r1)02πsin2r2θdθ(2r1)02πsin2rθdθ(2r1)I(0,r1)(2r1)I(0,r)
于是得到递推公式:
I ( 0 , r ) = 2 r − 1 2 r I ( 0 , r − 1 ) … … ( 2 ) \begin{aligned} I(0,r)=\frac{2r-1}{2r}I(0,r-1)……(2) \end{aligned} I(0,r)=2r2r1I(0,r1)……(2)

四、 I ( p , q ) I(p,q) I(p,q)的值

利用递推关系 ( 1 ) (1) (1)可得:
I ( p , q ) = 2 p − 1 2 q + 1 I ( p − 1 , q + 1 ) = ( 2 p − 1 ) ( 2 p − 3 ) ( 2 q + 1 ) ( 2 q + 3 ) I ( p − 2 , q + 2 ) = ( 2 p − 1 ) ( 2 p − 3 ) ( 2 p − 5 ) ( 2 q + 1 ) ( 2 q + 3 ) ( 2 q + 5 ) I ( p − 3 , q + 3 ) = ⋯ = ( 2 p − 1 ) ! ! ( 2 q − 1 ) ! ! ( 2 q + 2 p − 1 ) ! ! I ( 0 , p + q ) \begin{aligned} I(p,q)=&\frac{2p-1}{2q+1}I(p-1,q+1)\\ =&\frac{(2p-1)(2p-3)}{(2q+1)(2q+3)}I(p-2,q+2)\\ =&\frac{(2p-1)(2p-3)(2p-5)}{(2q+1)(2q+3)(2q+5)}I(p-3,q+3)\\ =&\cdots\\ =&\frac{(2p-1)!!(2q-1)!!}{(2q+2p-1)!!}I(0,p+q) \end{aligned} I(p,q)=====2q+12p1I(p1,q+1)(2q+1)(2q+3)(2p1)(2p3)I(p2,q+2)(2q+1)(2q+3)(2q+5)(2p1)(2p3)(2p5)I(p3,q+3)(2q+2p1)!!(2p1)!!(2q1)!!I(0,p+q)
由递推关系 ( 2 ) (2) (2)可得:
I ( 0 , r ) = 2 r − 1 2 r I ( 0 , r − 1 ) = ( 2 r − 1 ) ( 2 r − 3 ) ( 2 r ) ( 2 r − 2 ) I ( 0 , r − 2 ) = ( 2 r − 1 ) ( 2 r − 3 ) ( 2 r − 5 ) ( 2 r ) ( 2 r − 2 ) ( 2 r − 4 ) I ( 0 , r − 3 ) = ⋯ = ( 2 r − 1 ) ! ! ( 2 r ) ! ! I ( 0 , 0 ) = 2 π ( 2 r − 1 ) ! ! ( 2 r ) ! ! \begin{aligned} I(0,r)=&\frac{2r-1}{2r}I(0,r-1)\\ =&\frac{(2r-1)(2r-3)}{(2r)(2r-2)}I(0,r-2)\\ =&\frac{(2r-1)(2r-3)(2r-5)}{(2r)(2r-2)(2r-4)}I(0,r-3)\\ =&\cdots\\ =&\frac{(2r-1)!!}{(2r)!!}I(0,0)\\ =&2\pi\frac{(2r-1)!!}{(2r)!!}\\ \end{aligned} I(0,r)======2r2r1I(0,r1)(2r)(2r2)(2r1)(2r3)I(0,r2)(2r)(2r2)(2r4)(2r1)(2r3)(2r5)I(0,r3)(2r)!!(2r1)!!I(0,0)2π(2r)!!(2r1)!!

结合两个式子,并且做替换 r → p + q r\rightarrow p+q rp+q,可得:
I ( p , q ) = 2 π ( 2 p − 1 ) ! ! ( 2 q − 1 ) ! ! ( 2 p + 2 q ) ! ! = 2 π ( 2 p − 1 ) ! ! ( 2 p ) ! ! ( 2 q − 1 ) ! ! ( 2 q ) ! ! ( 2 p ) ! ! ( 2 p + 2 q ) ! ! ( 2 q ) ! ! = 2 π 2 2 p + 2 q ( 2 p ) ! ( 2 q ) ! p ! ( p + q ) ! q ! \begin{aligned} I(p,q)=&2\pi \frac{(2p-1)!!(2q-1)!!}{(2p+2q)!!}=2\pi \frac{(2p-1)!!(2p)!!(2q-1)!!(2q)!!}{(2p)!!(2p+2q)!!(2q)!!}\\ =&\frac{2\pi}{2^{2p+2q}} \frac{(2p)!(2q)!}{p!(p+q)!q!} \end{aligned} I(p,q)==2π(2p+2q)!!(2p1)!!(2q1)!!=2π(2p)!!(2p+2q)!!(2q)!!(2p1)!!(2p)!!(2q1)!!(2q)!!22p+2q2πp!(p+q)!q!(2p)!(2q)!

总结

通过推导得到了公式:
I ( p , q ) = 2 π 2 2 p + 2 q ( 2 p ) ! ( 2 q ) ! p ! ( p + q ) ! q ! \begin{aligned} I(p,q)=\frac{2\pi}{2^{2p+2q}} \frac{(2p)!(2q)!}{p!(p+q)!q!} \end{aligned} I(p,q)=22p+2q2πp!(p+q)!q!(2p)!(2q)!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值