Multi-Concept Customization of Text-to-Image Diffusion # 论文阅读

URL

https://arxiv.org/pdf/2212.04488

TL;DR

2022 年 12 月 CMU + 清华 + adobe 的文章。提出一种基于几张图片做 ip 保持的方法,可以支持多个 ip 出现的同一张图片里面。
在这里插入图片描述

Model & Method

框架整体如下图。训练数据除了特定的角色和场景,还额外引入了特定角色/场景相关联的图片,这样做是为了防止 language shift 现象,即所有关联词都生成特定的图片。
在这里插入图片描述

训练过程其实没有啥特别的地方,只 finetune 模型中的 cross attn(里面的 K、V),并且特定任务会增加 rare token。
多 ip 保持,给出了两种训练方法:

  • 联合训练:不同的物体给不同的 rare token,其他没有特殊的地方
  • 分别训练然后融合权重

Dataset & Results

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值